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Abstract

Although it is claimed that, among other features, aspect-oriented programming
(AOP) increases understandability and eases the maintenance burden, this tech-
nology cannot provide correctness by itself, and thus it also requires the use of
systematic verification, validation and testing (VV&T) approaches. With the pur-
pose of producing high quality software, many approaches to apply structural test-
ing criteria for the unit testing of procedural and object-oriented (OO) programs
have been proposed. Nevertheless, until now, few works have addressed the appli-
cation of such criteria to test aspect-oriented programs. In this paper we define
a family of control flow and data flow based testing criteria for aspect-oriented
programs inspired by the implementation strategy adopted by AspectJ – an aspect-
oriented extension of the Java language – and extending a previous work proposed
for Java programs. We propose the derivation of a control and data flow model for
aspect-oriented programs based upon the static analysis of the object code (the Java
bytecode) resulted from the compilation/weaving process. Using this model, called
aspect-oriented def-use graph (AODU), traditional and also aspect-oriented testing
criteria are defined (called Control and Data Flow Structural Testing Criteria for
Aspect-Oriented Programs - CDSTC-AOP). The main idea is that composition of
aspect-oriented programs leads to new crosscutting interfaces in several modules of
the system, which must be considered for coverage during structural testing. The
implementation of a prototype tool – the JaBUTi/AJ tool – to support the criteria
and the model proposed is presented along with an example. Also, theoretical and
practical questions regarding the CDSTC-AOP criteria are discussed.

Key words: Software Testing, Aspect-Oriented Programming, Structural Testing,
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1 Introduction

Most programming languages do not support the clear separation of some
types of requirements – usually non-functional – that tend to be spread through-
out several modules of implementation (for instance, the implementation of
logging). Aspect-oriented programming (AOP) supports the modularization
of such concerns by mechanisms that make possible the addition of behavior
– advisement – to selected elements of the programming language seman-
tics (the join points), thus isolating implementation that would otherwise be
spread throughout the base code. This mechanism supports the development
of programs whose structure more closely reflect their designs.

Until recently, research in the field has focused on the establishment of AOP
underlying concepts and aspect-oriented (AO) language implementations and
applications. Recently, however, researchers are turning to other issues related
to aspect oriented software development (AOSD), such as AO software design
and management of aspects during requirements engineering [5,25]. Software
testing is also a topic of interest in this new phase.

It has been claimed that software developed using AOP tend to be more under-
standable and easier to maintain, based on a more effective use of the separa-
tion of concerns principle. However, such technique cannot provide correctness
by itself, since it does not prevent developers from introducing errors in the
system, during development [40]. In fact, it has been argued that AOP can
introduce even more sources of fault compared to traditional software, mainly
because of its powerful mechanisms [2,4,21,22]. Hence verification, validation
and testing (VV&T) techniques are still important in the AOSD process and
might also require additional adaptations to be effectively used in this context.

One of the existing testing approaches is the structural testing technique (also
known as white-box testing), which derives test cases from the logical structure
of a program. The main idea of the technique is that one cannot trust a piece
of software if there are still certain elements in its structure that were never
executed during testing. Some examples of structural testing criteria require
that the test cases cover: all statements (or all-nodes), all branches (or all-
edges), and all variable definition-use pairs of a program [43,24].

In the effort to produce high quality applications, many approaches to apply
structural testing criteria for unit and integration testing of procedural and OO
programs have been proposed [12,24,32,33]. Nevertheless, until now, few works
have addressed the application of structural testing criteria to AO programs.
The structural testing technique is usually applied for unit testing although
research on using it in integration testing can also be found [11,12,19].

Zhao [40,41] was the first researcher that presented a strictly structural testing
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approach for AO programs. In his work a data flow unit testing approach to
test AO programs based on the AspectJ language inspired by the Harrold
and Rothermel approach for class testing [12] is proposed. Although called
“unit” testing, the approach also considered the interactions among classes
and aspects (because he considered clustered aspects and classes as the units
to be tested).

Alexander et al. [4] and Mortensen & Alexander [22] also propose coverage
criteria for AO programs. Two testing criteria are discussed: Insertion cover-
age which means testing each aspect code fragment at each point it is woven
into the program (this criterion is similar to the all-crosscutting-nodes crite-
rion that will be defined in this paper); and Context coverage which extends
insertion coverage to test an aspect code fragment in each place it is used,
by requiring, for instance, the testing of each method that a piece of advice
defines behavior. Mortensen and Alexander [22] also discuss the application of
mutation testing to test the quantification mechanism of AO languages.

Xu et al. [36,38] propose the application of state based testing for AO pro-
grams. The main idea is to extend the FREE model proposed by Binder [7]
in an Aspectual State Model (ASM) for AO programs. In the second part of
the work it is also proposed the use of structural testing along with the state
based approach, by replacing the transitions and advice interactions with the
corresponding control flow graphs, constructing an Aspect Flow Graph (AFG).
However, coverage analysis is briefly discussed. Recently, the same researchers
proposed a model-based approach to generate test cases for AO programs [37].

Some papers address the testing of aspects in isolation, from the perspective
of trying to execute and test pieces of advice and quantification mechanisms
without the need to weave the aspects with the rest of the system. Lopes et al.
[20] propose the extension of the JUnit framework to the unit testing of aspect
behavior implemented using the JAML language. Yamazaki et al. [39] propose
a framework to test aspects in isolation, addressing advice block testing and
also the testing of the quantification mechanism. These approaches could be
used together with the one that will be presented in this paper so that the
pieces of advice can be executed and analyzed in isolation, without the need
of any base code.

Although few research on applying testing techniques to AOSD can be found,
some works have been proposed towards applying statical analysis techniques
in this context. Störzer et al. [27,28], for example, proposes the application
of program analysis to AO programs in order to detect some types of flaws
particular to such programs. Denaro and Monga [8] proposed the derivation
of models for AO programs, suitable for verifying system properties (a similar
work is presented by Ubayashi and Tamai [30]).
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In this paper we propose the derivation of a model to represent the control
and data flow of aspect-oriented programs implemented in AspectJ to sup-
port an adequate structural testing approach for such programs. Based on
this model traditional testing criteria are defined along with a new family of
aspect-oriented testing criteria (we call both traditional and aspect-oriented
criteria Control and Data Flow Structural Testing Criteira for Aspect-Oriented
Programs – CDSTC-AOP). The main idea is that inspired by recent versions
of AspectJ and working with the woven artifacts, we can have an approach
that implies in a more direct application of structural testing criteria and also
support the peculiarities present in the structure of AO programs. For this
purpose we extend the work of Vincenzi et al. [32–34], that have proposed
control and data flow models for OO programs based on the Java bytecode.

The remainder of this paper is organized as follows. Section 2 briefly intro-
duces the aspect-oriented programming main concepts, the AspectJ language
and its implementation strategy. Section 3 presents an underlying control and
data flow model for AspectJ programs based on its implementation. Section 4
presents our approach for structural unit testing of AO programs, defining the
CDSTC-AOP for Java bytecode aiming at testing aspect-oriented programs.
Section 5 presents an inclusion relation analysis among the CDSTC-AOP cri-
teria based on the subsumes relation [10,42,43]. Section 6 gives an example
of use of the approach, presenting the JaBUTi/AJ prototype tool and Sec-
tion 7 presents a preliminary study on the efficacy and application cost of
the proposed criteria. Finally, Section 8 presents our conclusions and further
directions.

2 Aspect Oriented Programming and the AspectJ language

The AOP main idea is that while OO programming, procedural and other
programming techniques by themselves help separating out the different con-
cerns implemented in a software system, there are still some requirements
(usually non-functional) that cannot be clearly mapped to isolated units of
implementation. Examples of those concerns are mechanisms to persist ob-
jects in relational data bases, access control, quality of services that require
fine tuning of system properties, synchronization policies and logging. These
are often called crosscutting concerns, because they tend to cut across multi-
ple elements of the system instead of being localized within specific structural
pieces [9].

AOP then support the construction of separate units – the aspects – that have
the ability to cut across the system units, defining behavior that would other-
wise be spread throughout the base code. A generic AOP language should then
define: a model to describe hooks in the base code where additional behav-
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ior may be defined (these hooks are called join points which are well-defined
points in the execution of a program [29]); a mechanism of identification of
these join points; units that encapsulate both join point specifications and
behavior enhancements; and a process to combine both base code and aspects
(which is called the weaving process) [9].

2.1 The AspectJ Language

AspectJ is an extension of the Java language to support AOP. The basic new
constructs are the aspect itself; before, after and around advice, that are
used to define crosscutting behavior at join points; and pointcuts which are
used to define sets of join points in the program.

Aspects are units that combine: join point specifications (points in the system
where additional behavior may be defined), pieces of advice, which are the ac-
tual desired behavior to be defined and methods, fields and inner classes. Also,
aspects can declare members (fields and methods) to be owned by other types,
what is called inter-type declarations. Recent versions of AspectJ also support
declarations of warnings and errors that arise when join points are identified
or reached [29]. Before, after and around advice are method-like constructs
that can be executed before, after and in place of the join points, respectively.
These constructs can also pick context information from the join point that
has caused them to execute. Figure 1 lists part of the source code (one class
and two aspects) of an aspect-oriented program that will be used along this
paper. The application simulates a telephony system and is an extended ver-
sion of the telecom application that comes with the AspectJ distribution [29].
The application has been altered to support a different type of charging for
mobile calls.

The classes of the system are:

• Customer, which has name and area code fields and models customers;
• Connection (which is abstract) and two concrete classes Local and LongDis-

tance, that model local and long distance connections;
• Call, which models telephone calls (illustrated in Figure 1);
• Timer, which models timers.

The aspects of the system are:

• Timing, which implements the timing concern and measures the connection
duration for the customers, initializing and stopping a timer associated with
each connection (Figure 1);

• Billing, which implements the billing concern and declares a payer to each
connection and also makes sure that local, long distance and mobile calls
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public class Call {

private Customer caller , receiver;

private Vector connections = new Vector ();

public Call(Customer caller , Customer receiver ,

boolean iM)

{

01 this.caller = caller;

02 this.receiver = receiver;

03 Connection c;

04 if (receiver.localTo(caller )) {

05 c = new Local(caller , receiver , iM);

06 } else {

07 c = new LongDistance(caller ,

08 receiver , iM);

09 }

10 connections.addElement(c);

}

public void pickup () {

Connection connection =

(Connection)connections.lastElement ();

connection.complete ();

}

public boolean isConnected (){

return

(( Connection)

connections.lastElement ()). getState ()

== Connection.COMPLETE;

}

public void hangup(Customer c) {

for(Enumeration e =

connections.elements ();

e.hasMoreElements ();) {

(( Connection)e.nextElement ()). drop ();

}

}

public boolean includes(Customer c){

boolean result = false;

for(Enumeration e =

connections.elements ();

e.hasMoreElements ();) {

result = result ||

(( Connection)

e.nextElement ()). connects(c);

}

return result;

}

public void merge(Call other){

for(Enumeration e =

other.connections.elements ();

e.hasMoreElements ();){

Connection conn =

(Connection)e.nextElement ();

other.connections.removeElement(conn);

connections.addElement(conn);

}

}

}

public aspect Timing {

public long Customer.totalConnectTime = 0;

public long

getTotalConnectTime(Customer cust) {

return cust.totalConnectTime;

}

private Timer Connection.timer =

new Timer ();

public Timer getTimer(Connection conn) {

return conn.timer;

}

after (Connection c) returning () :

target(c) && call(void

Connection.complete ()) {

getTimer(c).start ();

}

pointcut endTiming(Connection c): target(c) &&

call(void Connection.drop ());

after(Connection c) returning () :

endTiming(c) {

getTimer(c).stop ();

c.getCaller (). totalConnectTime +=

getTimer(c). getTime ();

c.getReceiver (). totalConnectTime +=

getTimer(c). getTime ();

}

}

public aspect Billing {

declare precedence: Billing , Timing;

public static final long LOCAL_RATE = 3;

public static final long

LONG_DISTANCE_RATE = 10;

public static final long

MOBILE_LD_RECEIVER_RATE = 5;

public Customer Connection.payer;

public Customer getPayer(Connection conn)

{ return conn.payer; }

after(Customer cust) returning

(Connection conn): args(cust , ..)

&& call(Connection +.new (..))

{ conn.payer = cust; }

public abstract long Connection.callRate ();

public long LongDistance.callRate () {

return LONG_DISTANCE_RATE;

}

public long Local.callRate () {

return LOCAL_RATE;

}

after(Connection conn) returning () :

Timing.endTiming(conn) {

long time =

Timing.aspectOf (). getTimer(conn). getTime ();

long rate = conn.callRate ();

long cost = rate * time;

if (conn.isMobile ()) {

if (conn instanceof LongDistance) {

long receiverCost =

MOBILE_LD_RECEIVER_RATE * time;

conn.getReceiver (). addCharge

(receiverCost );

}

}

getPayer(conn). addCharge(cost);

}

public long Customer.totalCharge = 0;

public long getTotalCharge(Customer cust) {

return cust.totalCharge;

}

public void Customer.addCharge(long charge ){

totalCharge += charge;

}

}

Fig. 1. Extended version of an AO program example [29] written in AspectJ.

are charged accordingly (Figure 1);
• TimerLog, which implements a log that prints the times when the timer

starts and stops.
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2.2 AspectJ Implementation Strategy

In any AOP language implementation, aspect and non-aspect code must run
in a properly coordinated fashion. In order to do so an important issue is to
ensure that pieces of advice run at the appropriate join points as specified by
the program. Previous versions of AspectJ used the strategy of inlining the
advice code directly into the join points, which resulted in .class files that
were a mixture of aspect and non-aspect code [13]. In fact, older versions of
AspectJ did the weaving process based on source code: first files were pre-
processed into standard Java and then these new files were compiled with a
standard compiler. The recent AspectJ advice weaver is based on bytecode, so
this process is made by bytecode transformation rather than on source code
files.

The AspectJ advice weaver statically transforms the program so that at run-
time it behaves according to the language semantics. The compiler accepts
both AspectJ bytecode and source code and produces pure Java bytecode
as a result. The main idea is to compile the aspect and advice declarations
into standard Java classes and methods (at bytecode level). Parameters of the
pieces of advice are now parameters of these new methods (with some special
treatment when reflexive information is needed) [13]. In order to coordinate
aspects and non-aspects the system code is instrumented and calls to the “ad-
vice methods” are inserted considering that certain regions of the bytecode
represent possible join points (these are called join point static shadows [13]).
Furthermore if the join point cannot be completely determined at compile
time, these calls are guarded by dynamic tests to make sure that the pieces of
advice run only at appropriate time (these tests are called residues) 1 [13].

In older versions of AspectJ, pieces of advice were injected directly into the
methods of classes, resulting in blocks that mixed aspect with non-aspect code,
making it difficult to distinguish one from another. In recent versions, however,
methods are only added with method calls – possibly guarded by dynamic
tests – to advice methods before, after or in place of the corresponding join
points, depending on the advice type. Thus, woven classes generated with
current versions are cleaner than before and we can also identify the join
points, where aspects are defining behavior and also which pieces of advice are
executing at those join point (identified by the advice method names). Also, as
aspects are compiled into separate aspect classes, they may be instrumented
and analyzed separately supporting separate coverage analyses of pieces of
advice and methods of aspects.

With this implementation strategy one can thus identify the places where

1 The AspectJ compiler may also inline some advice in special cases but the -
XnoInline option can be used to prevent it from using that strategy [13].
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pieces of advice are adding behavior through a static analysis of the bytecode
resulted from the compilation/weaving process. That is, every call that is
made to an advice method in the bytecode represents an execution of the
corresponding advice of some aspect in the affected point.

Figure 2 shows part of the bytecode and the aspect-oriented definition-use
(AODU) graph (see Section 3) generated by the JaBUTi/AJ tool to repre-
sent the unit control and data flow of the Call class constructor presented
in Figure 1, based on the bytecode (data flow information is implicit and can
be viewed by pointing the mouse on each node of the graph). The labels of
regular nodes are the numbers of the first bytecode instructions of the cor-
responding blocks. Dashed nodes represent advice invocations (crosscutting
nodes [17,18]) and have additional information about the type of advice that
affects that point, and the name of the aspect it belongs to (for instance
� afterReturning − telecom.Billing � corresponds to an after returning ad-
vice of the Billing aspect). Bold nodes represent exit nodes, double-circled
nodes represent method calls and dashed edges represent abnormal control
flow when exceptions are thrown (not presented in the example).

To understand how the AODU is constructed based on bytecode, looking at
Figures 1 and 2, note that the block of bytecode instructions 0–1 does not
have correspondence with the source code (it represents a call to method Ob-

ject which is part of any constructor in Java bytecode); the block of bytecode
instructions 4–30 corresponds to lines 1–4 of the constructor’s source code;
the block of bytecode instructions 33–69 corresponds to line 5 of the construc-
tor’s source code and, since an advice runs at calls to the Local constructor,
a crosscutting node is used to represent that block. The block of bytecode
instructions 78–114 corresponds to lines 7–8 of the constructor’s source code
and, since an advice runs at calls to the LongDistance constructor as well,
another crosscutting node is used. The blocks of bytecode that start in in-
structions 72 and 117 do not have correspondence with the source code since
they just have nop and goto statements; and block of bytecode instructions
120–129 corresponds to line 10 of the constructor’s source code.

Note that the labels of the nodes are the numbers of the first bytecode in-
structions of the corresponding blocks and that the logic of the AODU is
straightforward when we inspect both source or bytecode. For instance, it is
clear why there is two edges coming out from node 4 since there is an if-then-
else conditional in the consructor’s code. Besides, the mapping from source
code to bytecode, and from bytecode to the AODU is explicit in the JaBU-
Ti/AJ tool, which will be presented later. A formal definition of the graph will
also be presented later.
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0 aload_0

1 invokespecial #15 <Method Object()>

4 aload_0

...

27 invokevirtual #30 <Method boolean

localTo(telecom.Customer)>

30 ifeq 78

33 aload_1

...

52 invokespecial #34 <Method

Local(telecom.Customer,

telecom.Customer, boolean)>

...

69 invokevirtual #110 <Method void

ajc$afterReturning$telecom_Billing$

1$8a338795(

telecom.Customer, telecom.Customer,

boolean, telecom.Connection)>

72 nop

73 astore 4

75 goto 120

78 aload_1

...

97 invokespecial #37 <Method

LongDistance(telecom.Customer,

telecom.Customer, boolean)>

...

114 invokevirtual #110 <Method void

ajc$afterReturning$telecom_Billing$

1$8a338795(

telecom.Customer, telecom.Customer,

boolean, telecom.Connection)>

117 nop

118 astore 4

120 aload_0

121 getfield #20 <Field java.util.Vector

connections>

124 aload 4

126 invokevirtual #41 <Method void

addElement(java.lang.Object)>

129 return

Fig. 2. Bytecode and AODU of the constructor of the Call class.

3 Underlying Control and Data Flow Models for AspectJ Pro-
grams

The most known program representation for establishing control flow testing
criteria is the control flow graph (CFG). With respect to the data flow testing
criteria, it is usually used the definition-use (or def-use) data flow graph, which
is an extension of the CFG with additional information about the definition
and use of variables in each node and edge of the CFG [24]. The def-use graph
can also be used to derive control flow testing requirements, since it is an
extension of the CFG.

Vincenzi et al. [32,33] have defined control and data flow models based on the
Java bytecode for the unit testing of OO programs implemented with Java.
With respect to AO programs written in AspectJ, such approach remains in-
teresting because, as pointed before, the compiler produces pure Java bytecode
that can be analyzed directly. However, such models must be extended to ad-
equately represent the peculiarities present in the structure of AO programs.

The main intra-unit difference present in the structure of an AO program
is the change of control flow from units to pieces of advice that occur when
aspects define behavior on join points in those units. This phenomena happens
because composition of aspect-oriented programs leads to new crosscutting
interfaces in several methods of the system [14]. In AspectJ, this mechanism is
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implemented with insertions of method calls before, after or in place of the join
points, as explained in the previous section. Thus, as these method calls can be
detected by a static analysis of the bytecode, an adequate graph to represent
the control flow of the units of such programs can be constructed based on such
object code. The blocks where advice implicit invocations are identified are
represented using special types of nodes which are called crosscutting nodes.
These nodes are crosscutting because they can cut across several units, since
a single advice can be applied to several join points located in those units.

3.1 The AODU graph

We propose the AODU data flow graph as the model from which control and
data flow testing requirements are derived. This type of graph must be con-
structed for each method-like construct of AspectJ which are: regular meth-
ods and constructors, pieces of advice and inter-type declared methods and
constructors. We consider these constructs as the smallest units of an AO
program.

Before constructing the AODU graph, following Vincenzi et al. [32,33], we
construct the data flow instruction graph (IG) of each unit. Informally the
IG is a graph whose nodes contain a single bytecode instruction and whose
edges connect instructions that can be executed sequentially 2 . Furthermore,
the IG is annotated with data flow information (definition and use of variables)
for each bytecode instruction.

The idea of the IG graph is to abstract the control and data flow involved in
each bytecode instruction individually. Some bytecode properties must be han-
dled carefully during the control flow analysis. In particular we have to handle
the intra-module subroutine calls that the Java Virtual Machine (JVM) im-
plements (jsr and jsr_w) and the exception handling mechanism of Java. In
the latter case, the problem is that the exception handlers (catch blocks) of
Java are not executed from regular control flow, but only when exceptions
are thrown. The solution adopted to reflect the real control flow involved in
this case was to use two different kinds of edges: regular edges that represent
the normal control flow, that is, when no exceptions are thrown; and excep-
tion edges which represent the control flow when exceptions occur (a similar
approach is presented by Sinha and Harrold [26], however considering only
explicitly generated exceptions) [31].

2 Note that the residues (2.2) inserted by the AspectJ weaver found in the bytecode
are also treated. Furthermore we will study whether these kinds of instructions
should be highlighted in our model for showing, for instance, that the execution of
a certain advice relies on dynamic information.
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Formally, the IG graph of a unit u is defined as a directed graph IG(u) =
(NI, EI, si, T I, CI), such that:

• NI represents the non-empty set of nodes of an IG graph: NI = {ni|ni

corresponds to a bytecode instruction i, for all reachable bytecode i of u 3 }.
• EI = EIr ∪ EIe is the complete set of edges of an IG:
· EIr and EIe correspond to two disjunct subsets of regular and exception

edges, respectively;
EIr is the set of regular edges defined as EIr= {(ni, nj)| the instruc-
tion in nj can be executed immediately after the instruction in ni

and (ni, nj) /∈ EIe}.
EIe is the set of exception edges defined as EIe = {(ni, nj)| the
instruction of ni is in the scope of the exception handler 4 that begins
in the instruction corresponding to the node nj };

• si ∈ NI is the entry node, which corresponds to the node that contains
the first instruction of u. Consider x a node of a directed graph, IN(x)
corresponds to the number of incoming edges of x. Thus IN(si) = 0.

• TI ⊆ NI is the set of exit nodes. Consider x a node of a directed graph,
OUT (x) corresponds to the number of outgoing edges of x. Thus TI =
{ni ∈ NI|OUT (ni) = 0}.

• CI ⊆ NI is the set of crosscutting nodes, i.e., nodes that represent execution
of pieces of advice from particular aspects. In fact, these nodes correspond
to the advice methods invocation instructions (Section 2.2).

3.1.1 Data Flow Model

To compute data flow information, a data flow model must be defined. Such
model will indicate which instructions correspond to definitions of variables
and which correspond to uses of variables and how reference variables and
arrays must be handled. In our case, an important step in the model definition
is the classification of the bytecode instructions, that will relate each one with
its implications on the data flow of the unit. The classification used for our
model was taken from the work of Vincenzi et al. [32,33], which was defined
to test OO programs. It has twelve classes of instructions, based on the data
flow implications of each one. With such classification, data flow information
about the definitions and uses of variables can be derived from the bytecode
and be added to each node or edge.

3 If the compiler ever generates unreachable bytecode instructions, such instructions
are ignored in the construction of the IG.
4 An exception handler j is responsible for handling exceptions generated by the
bytecode instructions located in an offset interval [ojm ..ojn ] (a “try” block). A byte-
code instruction i located in the offset oi is in the scope of the j exception handler
iff oi ∈ [ojm ..ojn ].
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For the Java bytecode data flow model the following assumptions are also
made to identify the types of data accesses treated:

(1) Array variables are considered as single memory locations and the defin-
ition/use of any of the elements of the array variable a[] is considered as
the definition/use of a[]. For example, in the command “a[i] = a[j] + 1”
there is a definition and a use of array variable a[];

(2) If an array variable a[][] is declared, accesses to its elements are handled
as definitions or uses of a[], depending on the kind of access. Thus, in
commands like “a[0][0] = 10” or “a[0] = new int[10]” there are definitions
of a[][] and a[], respectively. In commands like “a[0][0] = a[2][3]” there is
a use and a definition of a[][].

(3) Every time an instance field is used/defined there is a use of the reference
variable that allows the access to the field and a use/definition of the field
itself. For example, considering two reference variables ref 1 and ref 2
to objects of class C that contains two instance integer (int) variables x
and y, in the command “ref 1.x = ref 2.y” there are uses of reference
variables ref 1 and ref 2, a use of the instance field ref 2.y and a defin-
ition of the instance field ref 1.x. Moreover, every time an instance field
is used and not defined in a unit, it is considered as defined in the first
node of the corresponding IG graph;

(4) Class fields (static fields) are considered as global variables even if they
are accessed via an object reference variable. The same assumption made
for instance fields that are not defined within a unit is also made here;

(5) Method invocations like ref 1.foo(e 1, e 2, ..., e n) are considered a use
of reference variable ref 1. Rules for definition/use identification on ex-
pressions e 1,e 2, ..., e n are the same described on assumptions 1 to 4.
For instance units it is also considered a use of the current object this in
the first node of the IG. The same is considered for local variables that
correspond to formal parameters of the executing unit. For class methods,
only local variables corresponding to formal parameters are considered to
be defined on the entry node of the IG, from the fact that no instance
variables are required to invoke a class method.

The IG graph offers a practical way of traversing the set of instructions in
a given unit u, identifying the use and definition of variables. However, the
number of nodes and edges involved in this type of graph may be too large to
handle. Thus we construct the AODU based on the IG using the concept of
instruction block, i.e., instructions that are executed sequentially in a normal 5

control flow. When the first instruction of the block is executed, the following
instructions are also executed. The AODU graph is then the base model to
derive control and data flow testing requirements for the unit testing of As-

5 Normal means not considering any possible interruptions that may break the
execution of a program.
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pectJ programs. An AODU graph of a given unit u is defined as a directed
graph AODU(u) = (N, E, s, T, C), such that each node n ∈ N represents an
instruction block:

• N represents the set of nodes of a graph AODU : N = {n|n corresponds
to blocks of bytecode instructions of u}, i.e., N is the non-empty set of
nodes, representing the bytecode instructions of u. In is the ordered n-tuple
of instructions grouped in node n;

• E = Er ∪Ee is the complete set of edges of the AODU graph. Consider the
IG(u) = (NI, EI, si, T I, CI):
· Er is the set of regular edges defined as Er = {(ni, nj)| exists a regular

edge that goes from the last element of Ini
to the first element of Inj

in
the IG(u)};

· Ee is the set of exception edges defined as Ee = {(ni, nj)| exists an excep-
tion edge that goes from the last element of Ini

to the first element of Inj

in the IG(u)};
· Ec ⊆ Er is the set of crosscutting edges defined as Ec = {(ni, nj)| exists an

edge in the IG (u) from the last element of Ini
to the first element of Inj

and some element of Inj
is an instruction that invokes an advice method,

that is, nj ∈ C (refer to the definition of C below); or exists and edge
in the IG (u) from the last element of Ini

to the first element of Inj
and

some element of Ini
is an an instruction that invokes an advice method,

that is ni ∈ C}
• s ∈ N |IN(s) = 0 is the entry node of u;
• T ⊆ N is the (possibly empty) set of exit nodes, i.e., T = {n ∈ N |OUT (n) =

0};
• C ⊆ N is the (possibly empty) set of crosscutting nodes. In this case, a

crosscutting node corresponds to a block of instructions in which one of the
instructions represents an advice execution.

The algorithm used to reduce an IG data flow instruction graph into an
AODU data flow graph is presented in Figure 3. The algorithm is also ex-
tended from the work of Vincenzi et al. [32,33]. In lines 15-20 the crosscutting
nodes are identified and added to the set C. It is also guaranteed that there
is only one advice execution for each crosscuting node. Also, in lines 5-7, the
crosscutting edges set Ec is identified.

4 Structural Unit Testing of Aspect-Oriented Programs

The idea of defining structural testing criteria is to establish testing require-
ments related to paths or elements of a given program so that the execution
of them may improve the possibility to reveal the presence of implementation
errors. In our case we are interested in exploring structural elements that are
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# Input: IG , the instruction data flow graph
# IG = < NI, EI, si, T I, CI > to be reduced;
# Output: AODU , the data flow graph AODU = < N, E, s, T, C >
01 s := NewBlock(si)
02 for each x ∈ N
03 if x has no successor
04 T := T ∪ {x}
05 for each (x, y) ∈ E
06 if x ∈ C or y ∈ C
07 Ec := Ec ∪ {(x, y)}
# Auxiliary function: NewBlock
# Input: A node y of the IG graph
# Output: A block of the AODU graph
08 ins := the bytecode instruction in y
09 if y has already been visited
10 return the node w ∈ N that contains y
11 CurrentBlock := newblock
12 N := N ∪ {CurrentBlock}
13 x := y
14 do
15 if x ∈ CI //x is an IG crosscutting node
16 if CurrentBlock ∈ C
17 E := E ∪ {(CurrentBlock, NewBlock(x))}
18 x := null
19 else
20 C := C ∪ {CurrentBlock}
21 if x 6= null
22 include x as part of CurrentBlock
23 mark x as visited
24 if x ends the current block
25 for each v such that (x, v) ∈ EIr

26 Er := Er ∪ {(CurrentBlock, NewBlock(v))}
27 for each v such that (x, v) ∈ EIe

28 Ee := Ee ∪ {(CurrentBlock, NewBlock(v))}
29 x := null
30 else
31 if there is a v such that (x, v) ∈ EIr

32 x := v
33 else x := null
34 while x 6= null
35 return CurrentBlock

Fig. 3. Algorithm to generate an AODU graph from an IG graph (extended from
the work of Vincenzi et al. [33])

peculiar to AO programs. As shown in the previous section, we identify the
implicit execution of an advice as a special structural element, by means of
the crosscutting nodes. These special points represent the matched join points
where a given advice executes. We also identify other elements related to the
crosscutting nodes as special to our context: edges that have crosscutting nodes
as source or target nodes and definition-use pairs of variables whose uses are
in crosscutting nodes.

Alexander et al. proposed a fault model for AO programs [4] which focus on
the specific features of such programs in order to identify unique types of
faults. The fault model is based on the following classes:

(1) Incorrect strength in pointcut patterns;
(2) Incorrect aspect precedence;

14



(3) Failure to establish expected postconditions;
(4) Failure to preserve state invariants;
(5) Incorrect focus on control flow; and
(6) Incorrect changes in control dependencies.

An intuitive correlation can be made amongst some of the elements we defined
as peculiar to AO programs and some of these classes of faults. This motivates
the definition of the CDSTC-AOP. For instance, with respect to the first class,
the fault can be related to pointcuts that match more join points than they
should. In this case, there will be extra identified join points and, as conse-
quence, extra crosscutting nodes in the representation of the program. Thus,
a testing criterion that requires the execution of all crosscutting nodes can be
interesting in such case. Such criterion can also be interesting with respect to
the second class of fault, where the precedence of aspects is wrongly declared.
When such fault is present, in the representation of the program there will be
two or more sequential crosscutting nodes, but in the wrong order. Since the
tester is forced to exercise all crosscutting nodes, he/she may be led to reveal
the fault. These two types of faults can be summarized as (also depicted in
Figure 4):

(1) Extra advice execution: there is an advice which is defining behavior at a
join point and it should not. This type of fault is caused by a wrong defi-
nition of pointcut, which is picking out more join points than it should. It
is defined by Alexander et al. as an incorrect strength in pointcut patterns
(fault type 1, in this case a too weak pointcut pattern) [4].

(2) Wrong advice ordering: there are two pieces of advice defining behavior
at the same point in the wrong order. This type of fault is caused by a
wrong aspect ordering. It is defined by Alexander et al. as an incorrect
aspect precedence (fault type 2) [4].

<<before−SomeAspect>>

5

10

20

(a) Extra advice execu-
tion

<<afterReturning−SomeAspect>>

<<afterReturning−OtherAspect>>

wrong ordering

5

10

30

20

(b) Wrong advice ordering

Fig. 4. Some fault types particular to AO programs.

With respect to the third and forth classes of faults, these can be related to
data flow: context data that is passed from affected units to pieces of advice
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that declare behavior on them can be wrongly manipulated, causing the af-
fected units to fail to establish postconditions or to preserve state invariants.
Thus, exercising the def-use pairs whose uses are in crosscutting nodes can
help revealing these types of faults, because when these types of def-use pairs
are present, there is an evidence of data exchange between units (as will be
better explained below).

Investigating the other types of faults, it can also be inferred that these might
also be revealed by using the mentioned criteria. For example, faults of types 3
and 4 could be revealed by testing the program before and after weaving the
aspects, making sure that the results remain unchanged. Also, faults of type 5
may be revealed by focusing on methods affected by pieces of advice that
are applied through control flow based pointcuts, assuring that the advice is
running only at the right moments.

Now, independently of a particular class of fault, it can be interesting to cover
edges that connect crosscutting nodes (the crosscutting edges), aiming at re-
vealing faults that can arise only when a particular edge is chosen. For instance,
Figure 5 shows a simple example where two methods have their behavior af-
fected by pieces of advice, one related to incoming edges (methodA) and the
other related to outgoing edges (methodB), where the covering of just the cross-
cutting nodes would not necessarily reveal the division-by-zero error. Variable
n is used as a divisor in a division inside the after advice, and if it is set
to 0, a division by zero occurs. If the crosscutting edges (0, 9) from methodA

and (0, 14) from methodB are exercised, then the division by zero exception is
thrown, because only when those edges are chosen the value of n is set to 0.

Using a similar application we can motivate the use of the criterion that re-
quires the covering of definition-use pairs whose uses are in crosscutting nodes.
Figure 6 shows an example in which the covering of just the crosscutting node
and edges would not necessarily uncover the division by zero error. TheAODU
of methodC is also shown, together with data flow information. uc, up and d
correspond to computational and predicate uses sets and definition set, re-
spectively. The requirements generated by the criterion for this method are
the def-use pairs (n, 0, 55) and (n, 18, 55), because the uses are in a crosscut-
ting node. As in the previous example, variable n is used as a divisor in a
division inside the after advice, and since it is set to 0 at note 18, a division by
zero occurs, when such path is exercised. From the discussed criteria, only the
one that requires exercising the def-use pairs whose uses are in crosscutting
nodes requires a test case to exercise such path (related with the (n, 18, 55)
def-use pair), which would necessarily raise the exception.

Based on these motivations and with the AODU in hands, the CDSTC-AOP
criteria can be defined and applied to test the individual units of an AO
program. Before that can be done some additional concepts must be given.
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1 public class ClassA {

2 int n;

3 public ClassA () {

4 n = 10;

5 }

6 public void methodA(boolean b) {

7 this.n = 1;

8 if (b == true)

9 this.n = 0;

10 }

11 public void methodB(boolean b) {

12 int num;

13 num = 10;

14 if (b == true)

15 num = num / this.n;

16 System.out.println(num);

17 }

18 }

19
20 public aspect AspectA {

21 after(ClassA c) returning () :

22 execution(void

23 ClassA.methodA(boolean ))

24 && this(c) {

25 int div = 10 / c.n;

26 }

27 before(ClassA c) :

28 execution(void

29 ClassA.methodB(boolean ))

30 && this(c) {

31 c.n = 0;

32 }

33 }

methodA:

0: aload_0

1: iconst_1

2: putfield ClassA.n

5: iload_1

6: ifeq #14

9: aload_0

10: iconst_0

11: putfield ClassA.n I

14: goto #17

17: invokestatic

AspectA.aspectOf

20: aload_0

21: invokevirtual AspectA.ajc$

afterReturning$AspectA$1$edfdb4a8

24: return

methodB:

0: invokestatic

AspectA.aspectOf

3: aload_0

4: invokevirtual AspectA.ajc$

before$AspectA$2$382f4de9

7: bipush 10

9: istore_2

10: iload_1

11: ifeq #21

14: iload_2

15: aload_0

16: getfield ClassA.n

19: idiv

20: istore_2

21: getstatic

java.lang.System.out

24: iload_2

25: invokevirtual

java.io.PrintStream.println

28: return

<<afterRetrurning−AspectA>>

0

9

17

<<before−AspectA>>
0

14

21

Fig. 5. A simple program written in AspectJ and the bytecode and AODUs of
methodA and methodB from ClassA.

public class ClassB {

public int n;

public int methodC(int a, int b, int n) {

if (a == 1) {

System.out.println("a = 1");

if (b == 1) {

System.out.println("b = 1");

n = 0;

} else System.out.println("b <> 1");

} else System.out.println("a <> 1");

if (a == b)

methodD(n);

return b;

}

void methodD(int n) {

System.out.println(n);

}

}

public aspect AspectB {

after(int n) returning () :

call(* ClassA.methodD(int)) && args(n) {

int div = 10 / n;

}

}

up={b}

0

5

18 31 42

50

55
<<afterReturning−AnAspect>>

uc={n}

up={a,b}

up={a,b}

d={n}

73

d={a, b, n}

up={a}

up={a}

up={b}

Fig. 6. A simple program written in AspectJ and the AODU of methodC from
ClassB.

4.1 Basic Concepts

In the following structural testing criteria definitions, we have decided to follow
the work of Vincenzi et al. [32,33], that has partitioned the testing require-
ments into two disjunct subsets: one containing only the requirements that
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may be covered by a normal execution of the program – denominated as ex-
ception independent – and another containing only the requirements that need
the generation of an exception to be covered – denominated as exception de-
pendent. Thus, the following definitions – with respect to the AODU graph –
are required:

• Predicate nodes set: Consider the set OUTr(i) the set of output regular
edges of a node i, formally: OUTr(i) = |{(i, j)|(i, j) ∈ Er}| (‘|’ meaning the
module). The set of predicate nodes is the set Npred = {n ∈ N |OUTr(n) >
1}, that is, the set of all nodes of the AODU graph that have more than
one output regular edge.

• Exception clear path set: The exception clear path set is the set π|∀(ni, nj) ∈
π ⇒ (ni, nj) is reachable by a path that does not contain any exception edge.

• Exception dependent and independent nodes: The exception dependent nodes
is the set defined as Ned = {n ∈ N |@ an exception clear path π such that n ∈
π}. The Exception independent nodes is the set defined as Nei = N −Ned.

• Exception dependent and independent edges: The exception dependent edges
is the set defined as Eed = {e ∈ E|@ an exception clear path π such that
e ∈ π}. The exception independent edges is the set defined as Eei = E−Eed.

• Definition clear path: The definition clear path with respect to a variable
x from node i to node j and from node i to edge (nm, j), is the path
π = (i, n1, ..., nm, j), m ≥ 0 such that x is not defined in any of the nodes
n1, ..., nm.

• Crosscutting edges: The set of crosscutting edges is defined as Ec = {(x, y) ∈
E| x or y are crosscutting nodes, i.e., x ∈ C or y ∈ C}.

• Global and local c-uses: A c-use of a variable x in a node j is a global c-use
if there is no definition of x in the same node j, in a instruction prior to the
c-use. Otherwise it is a local c-use.

• The def, c-use, p-use, dcu and dpu sets: In the implementation of the data
flow criteria, all uses of a variable in a predicate node i ∈ Npred are consid-
ered p-uses. This is because we found it is too computational expensive to
distinguish between c-uses and p-uses from the Java bytecode instructions,
considering the JVM stack oriented structure. Thus, for a node i and a vari-
able x of the AODU graph, we define:

def(i) = {variables that are defined in node i}

c-use(i) =

variables with global use in node i if i ∈ Ncomp

∅ otherwise

p-use(i) =

variables with global or local use in node i if i ∈ Npred

∅ otherwise

dcu(x, i) = { nodes j of an AODU graph such that x ∈ c-use(j) and there
is a definition clear path with respect to x from i to j}
dpu(x, i) = { edges (j, k) of an AODU graph such that x ∈ p-use(j) and
there is a definition clear path with respect to x from i to the edge (j, k)}
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• Def-c-use and def-p-use associations: A def-c-use association is a triple (i, j, x)
where i is a node that contains a definition of x and j ∈ dcu(x, i). A def-
p-use association is a triple (i, (j, k), x) where i is a node that contains a
definition of x and (j, k) ∈ dpu(x,i). An association is either a def-c-use
association or a def-p-use association.

• The dcued, dcuei, dpued, dpuei sets: Following the work of Vincenzi et al.
[32,33], we have chosen to partition the association sets into two disjunct
subsets, considering the existence or inexistence of definition clear paths
that are also exception clear paths. Thus the dcued(x, i) ={nodes j of an
AODU graph such that x ∈ c-use(j) and there is no definition clear path
with respect to x that is also an exception clear path from node i to j}.
The dcuei(x, i) = dcu(x, i)− dcued(x, i). The same is done with respect to
the p-uses: the dpued(x, i) ={edges (j, k) of an AODU graph such that x ∈
p-use(j) and there is no definition clear path with respect to x that is also
an exception clear path from node i to the edge (j, k)}. The dpuei(x, i) =
dpu(x, i)− dpued(x, i).

4.2 Control Flow Testing Criteria

Two basic control flow testing criteria – all-nodes and all-edges – defined by
Myers [23] are applied in our context. Consider T a test set for a program P
(being AODU the corresponding control flow graph of P ), and Π the set of
paths executed by T . A node i is included in Π if Π contains a path (n1, ..., nm)
such that i = nj for some j, 1 ≤ j ≤ m. Similarly, an edge (i1, i2) is included
in Π if Π contains a path (n1, ..., nm) such that i1 = nj and i2 = nj+1 for some
j, 1 ≤ j ≤ m− 1.

4.2.1 The all-nodes criterion

• Π satisfies the all-nodes criterion if each node n ∈ N of an AODU graph is
included in Π. In other words, this criterion guarantees that all instructions
(or commands) of a given unit are executed at least once by some test
case of T .

In order to include the exception handling considerations we have made, the
all-nodes criterion is partitioned into two disjunct subsets of required elements
resulting in the following criteria:

• all-exception-independent-nodes (all-nodesei)
· Π satisfies the all-exception-independent-nodes criterion if each node nei ∈

Nei is included in Π. In other words, this criterion requires that each node
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of the AODU graph which is reachable by at least one exception clear
path is executed at least once by some test case of T .

• all-exception-dependent-nodes (all-nodesed)
· Π satisfies the all-exception-dependent-nodes criterion if each node ned ∈

Ned is included in Π. In other words, this criterion requires that each node
of the AODU graph which is unreachable by any of the exception clear
paths of the AODU graph is executed at least once by some test case of T .

When applying the all-nodes criterion to an AO program, one interesting point
to be considered would be the ability to know which of the covered nodes are
special to our context, as discussed above. In our case the special regions are
the advice executions represented by the crosscutting nodes.

In this manner, it would be interesting if we had a particular criterion which
would require the covering of all the crosscutting nodes, to help in revealing
faults particular to these points. Consequently, from the coverage analysis
based on such criterion one would have knowledge of when test cases would – or
would not – be sensitizing the aspects and how many of the advice executions
would be covered.

Therefore we define the all-crosscutting-nodes criterion:

• all-crosscutting-nodes (all-nodesc)
· Π satisfies the all-crosscutting-nodes criterion if each node ni ∈ C is in-

cluded in Π. In other words, this criterion requires that each crosscutting
node of the AODU graph is exercised at least once by some test case of T .

4.2.2 The all-edges criterion

• Π satisfies the all-edges criterion if each edge e ∈ E of an AODU graph is
included in Π. In other words, this criterion guarantees that all edges of the
AODU graph of a given unit are executed at least once by a test case of T .

In order to include the exception handling considerations we have made, the
all-edges criterion is also partitioned into two disjunct subsets of required
elements resulting in the following criteria:

• all-exception-independent-edges (all-edgesei)
· Π satisfies the all-exception-independent-edges criterion if each edge eei ∈

Eei is included in Π. In other words, this criterion requires that each edge
of the AODU graph which is reachable by at least one exception clear
path is executed at least once by some test case of T .

• all-exception-dependent-edges (all-edgesed)
· Π satisfies the all-exception-dependent-edges criterion if each edge eed ∈

Eed is included in Π. In other words, this criterion requires that each edge
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of the AODU graph which is unreachable by any of the exception clear
paths of the AODU is executed at least once by some test case of T .

In the same way that we have special nodes in the AODU – the crosscutting
nodes – we also consider the special edges that connect crosscutting nodes
with each other and with other nodes, as discussed before. From the testing
point of view it would also be interesting to know when these types of edges
are being exercised, following the same idea of the all-crosscutting-nodes.

Therefore, we define the all-crosscutting-edges criterion:

• all-crosscutting-edges (all-edgesc)
· Π satisfies the all-crosscutting-edges criterion if each edge ec ∈ Ec is in-

cluded in Π. In other words, this criterion requires that each edge of the
AODU graph which has a crosscutting node as source or target is executed
at least once by some test case of T .

4.3 Data Flow Testing Criteria

With respect to the data flow criteria, we decided to revisit the known all-uses
criterion which includes the all-c-uses and all-p-uses criteria [24].

4.3.1 The all-uses criterion

• Π satisfies the all-uses criterion if for all node i ∈ def(i), Π includes a defini-
tion clear path with respect to x from node i to all the elements of dcu(x, i)
and to all elements of dpu(x, i). In other words this criterion requires that
each definition-use association (i, j, x)|j ∈ dcu(x, i) and each definition-use
association (i, (j, k), x)|(j, k) ∈ dpu(x, i) is exercised at least once by some
test case of T .

Following the same idea applied for the all-nodes and all-edges criteria, the
testing requirements of the all-uses criterion is partitioned in two disjunct sets,
as defined by the following criteria:

• all-exception-independent-uses (all-usesei)
· Π satisfies the all-exception-independent-uses if for every node i ∈ N

and for all x ∈ def(i), Π includes a definition clear path with respect
to x from node i to all the elements of dcuei(x, i) and to all elements
of dpuei(x, i). In other words this criterion requires that each exception
free association (i, j, x)|j ∈ dcuei(x, i) and each exception free associa-
tion (i, (j, k), x)|(j, k) ∈ dpuei(x, i) is exercised at least once by some test
case of T .
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• all-exception-dependent-uses (all-usesed)
· Π satisfies the all-exception-dependent-uses if for every node i ∈ N and

for all x ∈ def(i), Π includes a definition clear path with respect to x from
node i to all the elements of dcued(x, i) and to all elements of dpued(x, i).
In other words this criterion requires that each exception dependent as-
sociation (i, j, x)|j ∈ dcued(x, i) and each exception dependent associa-
tion (i, (j, k), x)|(j, k) ∈ dpued(x, i) is exercised at least once by some test
case of T .

An interesting point to notice about the data flow of AO programs is that
aspect and affected units may exchange data (for example, when context vari-
ables are passed to some advice). Thus, another criterion for AO programs –
now related to the data flow – would be the exercising of def-use pairs whose
uses are in crosscutting nodes, because these uses are evidences of data ex-
change between classes and aspects, as discussed before. This is interesting
because erroneous data interactions among classes and aspects are possible
sources of faults [4].

From that we define the all-crosscutting-uses criterion:

• all-crosscutting-uses (all-usesc)
· Π satisfies the all-crosscutting-uses criterion if for all nodes i ∈ def(i),

Π includes a definition clear path with respect to x from i to each el-
ement of dcu(x, i) which are crosscutting nodes and to each element of
dpu(x, i) where the source node of the edge is a crosscutting node. In
other words this criterion requires that each def-c-use association (i, j, x),
j ∈ dcu(x, i) such that j ∈ C and each def-p-use association (i, (j, k), x),
(j, k) ∈ dpu(x, i) such that j ∈ C is exercised at least once by some test
case of T .

5 Inclusion Relation Among the Criteria

With respect to the relative strength of the CDSTC-AOP, determined by
the subsumes relation [10,42,43], Figure 7 shows a summary of the inclusion
relations among them and some other traditional criteria.

Here we present a proof for one of the relations involving the aspect-oriented
specific criteria all-edgesc and all-nodesc, where all-edgesc ⇒ all-nodesc, that
is, the former subsumes the latter. First lets assume that programs have in
each unit affected by aspects at least one node that has two outgoing edges.
This is a reasonable assumption to be made since it is expected that a unit
contains at least one conditional command. The proofs for other relations can
be found elsewhere [15].
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all-u ses

all-u sesei all-u sesed all-usesc

all-e d g e s

all-e d g e sei all-e d g e sed all-edgesc

all-n o d e s

all-n o d e sei all-n o d e sedall-no desc

Fig. 7. Summary of the subsumption relations among some traditional criteria and
the criteria defined in this paper for testing AO programs.

Theorem: all-edgesc ⇒ all-nodesc. Consider T a test set for a program P
(AODU being the control flow graph for P ) and consider Π the set of paths
exercised by the execution of T . Suppose T is adequate with respect to the
all-edgesc criterion for P . Let (i, j) ∈ Ec be a crosscutting edge of P . Since T is
all-edgesc-adequate, it implies that ∀(n1, n2) ∈ Ec, there is a path (n1, ..., nm)
in Π, such that n1 = nj and n2 = nj+1, for some j, 1 ≤ j ≤ m − 1. If T is
not adequate for the all-nodesc criterion then there is at least one crosscutting
node nc ∈ C such that nc is not included in any of the paths in Π. However,
by definition, every crosscutting node is source or target of a crosscutting
edge (if there is at least one edge in the unit). Thus, there is a crosscutting
edge (n1, nc) ∈ Ec or a crosscutting edge (nc, n2) ∈ Ec. Therefore, if T is
adequate for the all-edgesc criterion, then it is also adequate for the all-nodesc

criterion. To prove that all-nodesc ; all-edgesc, consider the AODU presented
in Figure 8. A test set that exercises path {(0, 1, 2)} satisfies the all-nodesc

criterion, however it does not satisfy the all-edgesc criterion, since crosscutting
edge (0, 2) is not exercised.

Considering the summary presented in Figure 7, it can be argued that it is
relatively easy to fulfill the requirements of the AO specific criteria. How-
ever, the idea is to perform an incremental testing activity starting with the
weaker criteria, going to the stronger ones as needed. Also, as pointed out by
Weyuker [35], a subsumed criterion is not necessarily less efficient in discov-
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Fig. 8. Example of AODU to prove that all-nodesc ; all-edgesc.

ering faults than the more demanding criterion, as there are typically many
different test suites that satisfy a given criterion. The idea of the aspect-
oriented specific criteria is to focus on the peculiar elements of AOP, helping
to find faults related to them.

6 Example of Application

Based on the criteria and model defined, coverage analysis can be used to
support an AOSD testing activity. In this section we use an example to show
how the JaBUTi/AJ tool can be used for this purpose. First we present some
operational properties of the OO version of the tool [31–34] (which are inher-
ited by the AO version) and then we provide an example of application using
the JaBUTi/AJ tool.

6.1 JaBUTi: Java Bytecode Understanding and Testing

Figure 9 presents the tasks performed by the JaBUTi tool to support struc-
tural testing of Java programs based on bytecode. The upper part depicts the
analysis of the program under test, the generation of the required structural
elements and the test case coverage analysis. The bottom part depicts the
program instrumentation, test case execution, and trace data collection.

To support the test case construction, the tool assigns weights to the test-
ing requirements using different colors indicating which requirements that, if
covered, would enhance the coverage by covering others. These weights are
assigned using the super-blocks and dominators concepts [1].

To evaluate the conduction of the testing activity, the tool also generates
testing reports in different levels (by project, by classes, by method, and by
test case). These reports help the tester deciding when to stop the testing
activity and show which parts may not have been sufficiently covered, which
can be used to improve the test session.
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Fig. 9. Summary of the tasks performed by structural testing tools, in particular by
JaBUTi (adapted from the work of Vincenzi [31]).

6.2 Testing Strategy

Before showing how to use the JaBUTi/AJ tool in a real testing process, the
testing strategy must be discussed. That is, while testing an AO program,
there are some issues related to how the units will be tested, which are related
to the way the software is being developed. For instance, since our targets are
programs that are both aspect and object-oriented, we must define in which
order the units are going to be tested (e.g. methods of classes before weaving
first, then pieces of advice, then woven methods, and so on). With regards
to unit testing, while developing programs like these, two general possible
approaches can be used:

• First, develop and test all methods of classes and then develop and test all
pieces of advice of aspects. Second, weave them together and test the woven
methods again (probably reusing the previously developed test suites); and

• Develop methods of classes and pieces of advice of aspects at the same time
and test them as they are developed;

The CDSTC-AOP criteria can be used in both situations. If the first approach
is used, the criteria are useful to check whether the previous test sets developed
for the methods do not cause them to fail after the weaving process, checking
whether these test sets exercise the places in methods where pieces of advice
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run (with respect to nodes, edges and def-use pairs). If these are not being
exercised, the criteria will force the tester to develop new test cases to enhance
the test set. Thus, we gain confidence that the methods still work after weaving
them with the aspects.

If the second approach is used, the CDSTC-AOP criteria can be useful in
building a new test set. In this situation, since the AO related criteria are
weaker than the traditional ones with respect to the subsumption relation,
the tester may first start with those, covering the parts of the methods related
to the aspects, enhancing the confidence that their behavior are in compliance
with the specification, even in the presence of aspects.

Although we suppose that the first approach is more frequently used (devel-
oping the classes and testing them first, and then developing the aspects, and
so on), in this section we specifically use the coverage analysis to help in the
construction of a new test suite (both to show how the criteria and tool can be
used) for illustration purposes. In the next section we show how the criteria
can be useful for the first approach as well.

6.3 Testing the Telecom Application

For the structural testing of the telecom application shown before, the tester
must first create a testing project in the JaBUTi/AJ tool using the project
manager. With the manager the tester can choose which classes and aspects
to instrument and test, choose a name for the testing project and also define
the required class paths and avoided packages.

Since the aspect-oriented testing criteria usually generates less requirements
than the other criteria (for instance, there are generally more regular nodes
than crosscutting nodes), the tester may first start with those, covering the
parts of methods and pieces of advice that are related to the aspects of the
system, in an incremental testing approach.

Figure 10 shows the number and percentage of coverage with respect to the
all-crosscutting-nodes testing requirements (shown as All-nodes-c in the tool)
for each class and aspect under test. The Call class appears with five test-
ing requirements, which means that there are five points of interactions with
pieces of advice, and the Timing aspect appears with two testing require-
ments. It is interesting to notice that the information given by this criterion
is very valuable because the tester can know exactly in which classes/aspects
of the system the pieces of advice are defining behavior, the number of such
interactions and which of these points have been covered by the test cases
(by percentage and by number of covered requirements). Testing requirements
are calculated for each unit, i.e. methods and pieces of advice, but are also
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summarized for each class/aspect, as shown in Figure 10.

Fig. 10. Testing requirements for the all-crosscutting-nodes criterion for the tele-
phony application.

To test the Call class with respect to the all-crosscutting-nodes criterion it is
necessary to know in which of the methods the aspects are defining behavior.
In order to do so the tester can visualize both bytecode and source code and
observe where the tool indicates the testing requirements. Figure 11 presents a
screen shot of the tool showing part of the source code of the Call class with
the requirements highlighted by different colors 6 . It can be noticed that in
the source code such requirements end up being the actual join points where
pieces of advice are defining behavior. For instance, in the case of the Call

constructor there must be some piece of advice that defines behavior at calls to
LongDistance and Local constructors (which are subclasses of Connection).
That can be confirmed visualizing the graph previously shown in Figure 2.
Crosscutting nodes 33 and 78 indicate that an after returning advice of the
Billing aspect defines behavior at those join points, matched through the
Timing.endTiming pointcut (such advice is responsible for attributing the bill
to the payer customers). Based on such information the all-crosscutting-nodes
criterion requires that there be test cases to cover such join points.

Analyzing the internal logic of the Call constructor, to cover the crosscutting
nodes we need two test cases: one that makes a local call and another that
makes a long distance call. The tester may then construct the test cases using,

6 Different colors and numbers associated to requirements represent the weights
of the testing requirements. For instance, if a requirement is colored red with a 6
associated to it, it means that if that requirement is covered, then other 6 will also
be covered. Refer to the work of Vincenzi et al. for further information about other
properties of the JaBUTi tool [32–34].
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Fig. 11. Part of the source code of the Call class with the all-crosscutting-nodes
testing requirements highlighted.

for instance, the JUnit [6] framework and then import those test cases into
the testing project. When a testing requirement is covered it is painted white
in the bytecode, in the source code and also in the graph so that the tester
may be aware of it.

With respect to the hangup method, which is also affected by pieces of advice,
the logic is the following: when a customer hangs up a call it is necessary to
drop all connections related to it, what is done by means of a for loop. Since
the advice of the Timer aspect must stop the timer every time a connection
is dropped, it is executed after every call to the drop method. The Billing

aspect defines behavior at the same join point by means of another advice,
because every time a connection is dropped it must charge the right customer
with the right amount. Figure 12 shows the AODU of the hangup method,
with the executions of pieces of advice represented by crosscutting nodes 11
and 32. To cover such crosscutting nodes it is necessary a test case that initiates
a call and hangs it up. When the method is called, the pieces of advice are
executed at the drop of each connection related to the call, inside the loop.

Here the tester may also have evidences of the correctness of the aspects imple-
mentation and also whether they are interacting correctly, since the Billing

aspect is executed after the timing aspect. Note that the precedence of the
aspects is important in this case because if the billing aspect executed before
the timing aspect, there would be a failure because the billing aspect requires
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Fig. 12. AODU of the hangup method.

information about the call duration, which is computed by the timing aspect.
The precedence becomes clear to the tester with the AODU graph, which
helps to understand these types of interactions. As discussed before, this type
of fault is the incorrect aspect precedence of Alexander’s fault model [4].

The pickup method is also affected by an after returning advice of the Timing
aspect, in order to start a timer every time a call is completed. To cover the
crosscutting node it is necessary to create a test case that picks up a call so
that it can be verified whether the timer have been started.

With respect to the Timing aspect, two pieces of advice that are responsible
for starting and stopping the timer are affected by after returning pieces of
advice of the TimerLog aspect, to log the start and stop time of timers. In
these points there are aspect-aspect interactions, because the TimerLog aspect
defines behavior in the Timing aspect. To cover such crosscutting nodes it is
necessary to create a test case that initiates and terminates a call, sensitizing
the pieces of advice of the Timing aspect which by its turn will sensitize the
TimerLog aspect. It could also be used a test case to directly execute the
Timing and TimerLog pieces of advice if there was a special infra-structure to
support such feature.

With the execution of the test cases created until now, all parts of the sys-
tem that are affected by pieces of advice of aspects are covered (that is, all
crosscutting nodes). That can be confirmed by looking at the testing require-
ments summary with respect to the all-crosscutting-nodes criterion: a coverage
of 100% for each class and aspect is reported (not shown here). Due to the
simplicity and size of the example the same test suite is also adequate for
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Table 1
Test requirements set for each AO criteria and for each method/advice of the telecom
application.

Class/Aspect Method/advice All-Nodesc All-Edgesc All-Usesc

Call constructor {33, 78} {(4, 33), (4, 78), {(iM, 0, 78), (caller, 0, 78),

(33, 72), (78, 109)} (receiver, 0, 78), (iM, 0, 33),

(caller, 0, 33), (receiver, 0, 33)}

hangup {11, 32} {(11, 32), (41, 11), {(e, 0, 11)}

(32, 40)}

pickup {0} {(0, 27)} ∅

Timing after returning {0} {(0, 17)} ∅

Connection.complete

after returning {0} {(0, 17)} ∅

endTiming

the other aspect-oriented specific criteria (i.e. all-crosscutting-edges and all-
crosscutting-uses).

Now with respect to the aspects themselves, one important thing is to check
whether the test cases are covering the code of pieces of advice. For example, if
the tester looks at the AODU graph of the after returning advice of the Billing
aspect (not shown here), with respect to the all-nodes (exception-independent)
criterion, there are two nodes that have not yet been covered by the test cases.
Analyzing the logic of the advice, we need an extra test case that makes a
long distance mobile call. With the execution of such test case the nodes are
covered, however, observing the all-edges (exception-independent) criterion,
there still remains an edge to be exercised: the one related to local mobile
calls. With these extra test cases, all nodes, edges and definition-use pairs of
the advice are covered.

This testing activity can go on until all testing requirements are covered (with
respect to all or a particular set of the CDSTC-AOP testing criteria), until
the tester judges enough, or based on some percentage previously defined in
a test plan. Table 1 shows the testing requirements generated by each of the
aspect-oriented specific testing criteria for all classes/aspects of the telecom
application.

7 Efficacy of the CDSTC-AOP: A Preliminary Study

There are two perspectives that can be taken into account while using struc-
tural testing criteria: 1) coverage analysis based on the criteria to measure the
quality of a previously created test set; and 2) construction of new test sets
based on the testing requirements derived by the criteria. In this section we
present a preliminary study of the efficacy of the CDSTC-AOP criteria from
these two perspectives.
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...

\\ method inside a certain class

public Object highestHashCode(Object o1,

Object o2) {

if(o1.hashCode () > o2.hashCode ())

return o1;

else

return o2;

}

...

(a) highestHashCode method.

...

\\test cases inside some test class

public void testHighest1 () {

a = new ClassA ();

Integer b = new Integer (1);

Integer c = new Integer (2);

Object res = a.highestHashCode(b, c);

assertEquals(c, res);

}

public void testHighest2 () {

a = new ClassA ();

Integer c = new Integer (2);

Integer b = new Integer (1);

Object res = a.highestHashCode(c, b);

assertEquals(c, res);

}

(b) Test cases to cover all-nodes of the
original method.

...

\\ advice inside some aspect

before(String s1 , String s2) :

execution (* *.*(..)) && args(s1, s2) {

System.out.println(s1 + " " + s2);

}

...

(c) Advice that can affect the high-
estHashCode method.

...

public void testSubtractA () {

a = new ClassA ();

String b = new String("abc");

String c = new String("def");

Object res =

a.highestHashCode(b, c);

assertEquals(res , c);

}

...

(d) Test case to sensitize the advice in the
highestHashCode method.

Fig. 13. Example that evidences the usefulness of the CDSTC-AOP on coverage
analysis.

7.1 Coverage Analysis Based on the CDSTC-AOP

The inclusion relation summary presented in Section 5 is defined based on
methods already woven with aspects. However, there is a comparison that can
be made among the testing requirements generated for methods before and
after the weaving process. In that case, for instance, the all-nodes criterion
applied to the method does not subsume the all-crosscutting-nodes applied
to the woven method. This happens due to structural changes in the method
that may come up after the weaving process. In those cases, the AO criteria
can be more useful to increase the quality of a test set. Consider, for instance,
the code shown in Figure 13(a) presenting the highestHashCode method,
which returns the object with the highest hash code, and Figure 13(b), which
contains the test cases to cover all-nodes of the method.

Now, considering the advice presented in Figure 13(c), when the method is
woven to the aspect that contains it, some structural changes occur inside the
method. Specifically, it must be checked whether the parameters being passed
are strings, because the advice only runs when arguments are of that type. The
structural changes can be identified in Figure 14, which presents the graph of
the method before and after the weaving process. It can be noticed that the
woven method has more nodes and edges than the original, and also a cross-
cutting node. The extra nodes and edges represent the parameters checking,
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(a) AODU of the
method before weav-
ing.

(b) AODU of the method after weaving.

Fig. 14. Control flow graphs of the highestHashCode method considering and not
considering the advice.

which is a residue added by the AspectJ compiler, and the crosscutting node
represent the advice execution.

With these changes, the previous all-nodes adequate test set is not adequate
for the all-crosscutting-nodes criterion, since the before advice is not exercised
by the test cases (none of them passes strings to the method). Thus the quality
of the test set must be enhanced so that the advice can be sensitized. Figure
13(d) presents a test case that can be added to the previous test set to sensitize
the execution of the advice in the highestHashCode method and thus exercise
the crosscutting node and also the extra nodes and edges.

This example evidences the effectiveness of the CDSTC-AOP on coverage
analysis, because it is interesting to analyze the coverage of the methods that
were previously tested to check whether the test sets are also adequate with
respect to the AO criteria. In case they are not, the criteria guide the con-
struction of new test cases in order to cover the parts related to aspects. This
can be very useful because if there is a fault related to the execution of an
advice, the previous test set would not reveal it.

7.2 Test Case Construction Based on the CDSTC-AOP

The idea now is to start a testing activity with no previous test sets, like in
the example shown in Section 6. In this case, the criteria are useful to help to
more effectively and quickly discover faults related to AOP misuse, or related
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to the advice logic.

Consider the same code example presented in the previous section (Figure
13(d)). Starting with the all-crosscutting-nodes criterion would make the tester
create the first test case as one that executes the advice, like the one presented
in Figure 13(d). If there was a fault in the advice or in the pointcut that
selected the execution of the highestHashCode as a joint point, it could be
revealed with only one test case. However, if we started with the all-nodes
traditional criterion, we would need more test cases to adequate the test set,
and thus, we might need more time to find the fault. These considerations are
similar to the remaining AO and traditional control and data flow criteria.

This happens because the AO related criteria make the tester focus on the
advice executions, which make faults related to them much more obvious. For
the structural traditional criteria, test cases are created to cover regular nodes,
edges and def-use pairs and thus it can be harder or take more time and effort
to reveal the AO faults (since they generally require more test cases).

These considerations suggest that the use of the different criteria in conjunc-
tion is likely to give a higher probability of finding both AO and non-AO
related faults. We plan to further investigate these evidences with larger ex-
periments to gather more accurate results.

8 Conclusion

This paper represents a first step towards applying the structural testing tech-
nique to unit testing of AO programs. The structural testing of AO programs
based on bytecode approach presented in this paper answers (or partially an-
swers) the following questions brought by Alexander et al. [4]:

(1) Are there ways to test aspects on their own?
(2) Can we measure test coverage after weaving?
(3) How do we test aspects that interact with a core concern?
(4) How do we test aspects that mutually interfere?
(5) How do we test aspects whose effects must span more than one concern?

With our approach the first question can be answered affirmatively with re-
spect to structural testing. Coverage analyses of pieces of advice and methods
that belong to aspects can be done separately, without the need of any base
code. However, it would be required an infra-structure to run pieces of advice
in isolation, without the need of any base code. But since aspects are instru-
mented separately, testing and coverage analysis can also be independent.
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With respect to the second question, it can also be answered affirmatively,
since programs can be tested after the weaving process (i.e., we analyze the
bytecode directly). The third, forth and fifth questions can also be answered af-
firmatively, as aspects that interact with base concern, whether in conjunction
with other aspects and affecting one or more concerns, will generate crosscut-
ting nodes in the places where they affect, thus generating testing requirements
related to them.

Comparing our work with the structural testing approach proposed by Zhao
[40,41], the main difference from our approach is that the granularity of the
“unit” testing in Zhao’s case is more coarse, since we cannot test and analyze
coverage of a piece of advice or affected method in isolation. Also, no specific
testing criterion has been defined. With respect to the work of Alexander
[3,2,4] & Mortensen [22], since the criteria are only discussed briefly and no
formal definition is given, we can only make a correlation between the insertion
coverage criterion – which requires testing each aspect code fragment at each
point it is woven into – with the all-crosscutting-nodes criterion defined here,
which have very similar purposes.

With respect to the data flow testing criteria defined, there is also the issue of
infeasible paths which is an undecidable issue. The JaBUTi/AJ tool supports
the definition of infeasible paths by the tester, which can make the related
requirement to be discarded (since it could never be covered).

The approach presented in this paper is specific to AspectJ programs but
we have strong evidences that it could also be applied to other asymmetric
AOP implementations (i.e., the ones that distinguish aspects from base code),
because we address essential structural elements. The crosscutting node, for
instance, models the basic interaction among aspects and other units at join
points, and such interaction is usually present in most AOP implementations.
Thus, the semantics of the AODU graph could be generalized in order to be
used together with other implementations.

As commented by Kiczales and Mezini [14], composition of AO programs leads
to new crosscutting interfaces in several modules of the system. The main con-
tribution of our testing approach is to explicit the new crosscutting interfaces
added by aspects in the affected modules – by means of the AODU graph
– and using criteria that assures that such interfaces are exercised by test
cases. We see that as an important requirement of the structural testing of
AO programs since these new structural elements should be considered for
coverage during testing. Moreover, this work is also a basis for ongoing and
future research [16].
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