
A Test-Driven Approach to Code Search and its

Application to the Reuse of Auxiliary Functionality

Otávio Augusto Lazzarini Lemosa,1, Sushil Bajracharyac, Joel Ossherc,
Paulo Cesar Masierob,2, Cristina Lopesc

aDepartment of Science and Technology, Federal University of São Paulo, S. J. dos
Campos, SP, Brazil

bComputer Systems Department, ICMC/USP, São Carlos
Caixa Postal 668, 13560-970, São Carlos - SP - Brazil

cDonald Bren School of Information and Computer Sciences,
University of California, Irvine

Abstract

Context: Software developers spend considerable effort implementing aux-
iliary functionality used by the main features of a system (e.g. compress-
ing/decompressing files, encryption/decription of data, scaling/rotating im-
ages). With the increasing amount of open source code available on the
Internet, time and effort can be saved by reusing these utilities through in-
formal practices of code search and reuse. However, when this type of reuse
is performed in an ad hoc manner, it can be tedious and error-prone: code
results have to be manually inspected and integrated into the workspace.
Objective: In this paper we introduce and evaluate the use of test cases as
an interface for automating code search and reuse. We call our approach
Test-Driven Code Search (TDCS). Test cases serve two purposes: (1) they
define the behavior of the desired functionality to be searched; and (2) they
test the matching results for suitability in the local context. We also describe
CodeGenie, an Eclipse plugin we have developed that performs TDCS using
a code search engine called Sourcerer.

Email addresses: otavio.lemos@unifesp.br (Otávio Augusto Lazzarini
Lemos), sbajrach@ics.uci.edu (Sushil Bajracharya), jossher@ics.uci.edu
(Joel Ossher), masiero@icmc.usp.br (Paulo Cesar Masiero), lopes@ics.uci.edu
(Cristina Lopes)

1Financially supported by FAPESP, Brasil
2Financially supported by CNPq, Brasil

Preprint submitted to Information and Software Technology October 8, 2010



Method: Our evaluation consists of two studies: an applicability study with
34 different features that were searched using CodeGenie; and a performance
study comparing CodeGenie, Google Code Search, and a manual approach.
Results: Both studies present evidence of the applicability and good perfor-
mance of TDCS in the reuse of auxiliary functionality.
Conclusions: This paper presents an approach to source code search and its
application to the reuse of auxiliary functionality. Our exploratory evaluation
shows promising results, which motivates the use and further investigation
of TDCS.

1. Introduction

With the popularity of the Open Source Software movement, there has
been an increasing availability of source code over the Internet. This often
makes software developers view the Internet as a Scrapheap for collecting
raw materials to be used in production in the form of some reusable compo-
nent, library, or simply examples revealing implementation details [1]. How-
ever, retrieving source code in the form of reusable self-contained pieces is
usually hard and laborious, even with the help of keyword-based search en-
gines: searches are usually text-based, dependencies have to be manually
extracted, and pieces of code have to be manually copied and integrated
into the workspace. To make pragmatic code search and reuse faster, safer,
and more semantical, we introduce the use of test cases as an interface for
automating this process.

Recently, there has been effort to develop search engines specifically tar-
geted at source code [2, 3]. While these systems are promising, they do not
leverage complex relations present in the code, and therefore have limited
features and search effectiveness. In particular: (1) there is no strong sup-
port for integration of these search facilities in a development environment;
(2) the mechanisms for expressing code queries are usually limited to key-
words; and (3) there is little guarantee that the retrieved results correctly
implement the behavior of the desired functionality in the local context.

Concerned with these limitations, and based on Sourcerer – a source code
infrastructure [4, 8] developed within our group – we propose an approach to
pragmatic source code search and reuse that integrates the use of test cases
as inputs for the code search queries (following Holmes and Walker [20], we
contrast pragmatic reuse with traditional, anticipated reuse approaches such
as frameworks and product lines). Code queries are automatically generated



from information available on test cases (names of classes and methods, and
interfaces), assuring quick retrieval of results that are most likely to be related
to the desired functionality. Matching results are then executed against the
test cases, providing knowledge of their conformance with the desired func-
tionality. We call this approach Test Driven Code Search (TDCS).

Since TDCS should be tightly integrated with the development environ-
ment, we have developed a plugin for the Eclipse IDE named CodeGenie [27].
With CodeGenie developers design test cases, trigger the searching facility,
and explore code results without resorting to any other tools. We believe
TDCS can be applied in the reuse of several types of functionality but in this
paper we evaluate its application to auxiliary functionality3. The evaluation
of TDCS in the context of auxiliary functionality is important because de-
velopers perform this type of small-scale reuse regularly during the course of
their development activities [13, 20]. Our evaluation consists in the explo-
ration of CodeGenie in two ways: to check its applicability, we searched for
several auxiliary features surveyed in our group as interesting to be reused,
from a list used by Hoffmann et al. [17], and from examples used to describe
a recent code search approach [40]; and to check its performance in the reuse
of auxiliary functionality, we conducted an experiment with 34 undergradu-
ate and 7 graduate students to compare CodeGenie with Google Code Search
(CS), a well known code search engine, and with a manual approach (i.e.,
implementing the feature by hand).

In the first study, we were able to find and reuse implementations of 34
features with CodeGenie. In the second study, CodeGenie was on average
50% faster than Google CS for the undergraduate students, and slightly faster
for the graduate students (note that the sample size of graduate students was
very small). In both experiments CodeGenie was significantly faster than
the manual approach. The remainder of this paper is structured as follows.
Section 2 presents background information about the main topics of this
paper. Section 3 presents the TDCS approach along with requirements for
a TDCS system implementation, and Section 4 describes a TDCS working
example. Section 5 presents our TDCS implementation. Section 6 presents
the results of the applicability and performance evaluation of TDCS through

3We define auxiliary functionality (or auxiliary feature) as a relatively small – compris-
ing around 10–200 lines of code and involving around 1–3 classes –, characteristic, and
supportive action of a system or component [24].



CodeGenie and Section 7 discusses related work. Finally, Section 8 concludes
the paper.

2. Background

2.1. Source Code Search

Singer et al. [45] report code search as the most common activity for
software engineers. Sim et al. [43], on the other hand, summarize a good list
of motivations for code search where the use of several search forms – such as
looking for implementations of functions and looking for all places that call
a function – stand out. These studies provide strong evidence that source
code search is an essential activity to software developers today.

Open source code repositories such as Sourceforge and Tigris provide
simple searching capabilities, which are essentially keyword-based searches
over the projects’ meta-data. Because of that limited querying capability,
when looking for source code on the Internet, developers usually resort to
powerful general-purpose search engines, such as Google. Web search engines
perform well for keyword-based search of unstructured information, but they
are unaware of the specificities of software, so the relevant results are usually
hard to find.

Currently there has been significant work in the development of large scale
source code-specific search engines [2, 3]. Sourcerer is an infrastructure for
code analysis and indexing that addresses some of the shortcomings of these
systems; in particular by storing detailed information about the structural
relations present in the code [4, 8].

2.2. Program Slicing

Program slicing is traditionally a technique for decomposing a program
into the minimal set of statements that can affect (or are affected by) the
slicing criterion [49]. The slicing criterion is a pair consisting of a program
point and a subset of program variables. The resulting program must itself
compile and should execute as the initial program with respect to the cri-
terion. A concise definition of a program slice S is “a reduced, executable
program obtained from a program P by removing statements, such that S
replicates part of the behavior of P” [47].

Once the desired code is found in a code search task, it can often be
difficult to manually extract what is necessary to make it work in a local
context. In order to address this issue, we can use a variant on program



slicing. Instead of working at statement-level granularity, we can apply the
same principles to entities such as classes and methods. Starting from an
arbitrary set of seed entities E, all originating from the same program P ,
we automatically retain only those entities from P that are necessary for the
entities in E to function properly. This approach is very similar to what is
done by Tip et al.’s Jax [48], a tool for reducing the size of Java binaries
through the elimination of unnecessary class files.

To give an example of how this works, suppose we are looking for a method
that computes the probability mass function (pmf), that is, the probability
that a discrete random variable is exactly equal to some value. In our search,
we could come upon the Math class partially shown in Figure 1. The class
contains a method to compute pmf – public static double pmf(int k, int n,
double p) – and other math methods. Since we are only interested in pmf, we
want to extract only those parts of the Math class that are related to it. By
examining Math, we can see that pmf calls exponentiation and combination
(which in turn calls factorial). Thus, to extract the pmf method out of
Math, we also need these methods, everything else can be discarded. This
is a type of forward static slicing, as we do not make assumptions regarding
the program’s input, and the dependency graph is traversed forwards from
the declaration of the pmf method. Note that the slice may also span other
classes and packages. This is the type of slicing approach we need when
extracting code from code bases in a search task (see Section 5 for more
details).

2.3. Test-Driven Development (TDD)

A test case is a set of inputs, execution conditions, and expected output
for a specific function of a program [24]. The expected output is evaluated
based on an oracle – in our case, the tester – which determines the correct re-
sult of the function given an input [12]. Test cases provide a context in which
low-level design decisions can be made before having the actual implemen-
tation of a function. For instance, test cases can specify which classes and
methods to create, how they will be named, what interfaces they will possess
(by analyzing the input and output types), and how they will be used [14].
Test-Driven Development (TDD) takes advantage of that fact by guiding
programmers to write functional test cases before production code [11].

The dynamics of writing the tests first – referred to as Test-First – is
our focus in this paper. Test-First is usually supported by unit testing tools
such as JUnit, a testing framework designed to support unit testing for Java



public class Math {
public static final double PI = 3.141592653589793;

public static double pmf(int k, int n, double p) {
long firstTerm = combination(n, k);
double secondTerm = exponentiation(p, k);
double thirdTermBase = (1 - p);
int thirdTermExp = n - k;
double thirdTerm = exponentiation(thirdTermBase, thirdTermExp);
return firstTerm * secondTerm * thirdTerm;
}

public static long combination(int k, int n) {
...
long s = factorial(k);
...
return s;

}

public static int abs(int i) { ... }

public static long factorial(int x) {
...
return f;

}

public static int min(int a, int b) { ... }

public static double exponentiation(double base, int exponent) {
...
return exp;

}

...
}

Figure 1: A partial Math class being sliced.

programs. In JUnit, expected outputs are evaluated using special assertion
methods – or comparators [12] (such as assertEquals and assertTrue).

The following is an example of a Test-First scenario using Java as the
programming language and JUnit as the unit testing framework. Suppose a
developer needs to implement a function that converts Arabic numbers to Ro-
man numerals. An example of a test suite with test cases in the ordered pair
form – <‘input’, ‘expected output’> – for this function is: T = {< 1, “I” >,
< 2, “II” >, < 4, “IV ” >, < 10, “X” >, < 50, “L” >, < 1000, “M” >}. A
partial implementation of T using JUnit is presented in Figure 2.



public class RomanTest extends TestCase {
public void testRoman1() {

assertEquals("I", Util.roman(1));
}

public void testRoman2() {
assertEquals("II", Util.roman(2);

}

...

public void testRoman6() {
assertEquals("M", Util.roman(1000));

}
}

Figure 2: Partial JUnit test class.

Following the Test-First idea, to compile the test class, the developer
should create a class named Util with a roman static method that implements
the conversion of Arabic numbers to Roman numerals. If the test cases run
successfully, there is evidence that the method is correctly implemented. Note
that the test cases must be issued to a particular entry point in the program,
which will also provide the output information – i.e., the actual result [12]
– given a specific input. In this case the entry point is the public method
roman.

It is important to note that in TDD test cases are usually low level and
no type of formal testing criteria (e.g., functional or structural testing [24])
is used [14].

3. Test-driven code search (TDCS)

The same way that test cases can be used to define a software feature in
TDD, they can also be used to describe a desired feature in a code search
task. Moreover, in this context, we can take advantage of the following
characteristics of TDD [14]:

1. Feedback: Test cases provide instant feedback about the suitability of
a particular code result in the local context;

2. Task-orientation: The requirement of designing test cases first guides
the developer in searching for self-contained and manageable software
pieces, one at a time;

3. Quality assurance: Since code results might come from unknown sources
which are not always trustable, tests cases help in assuring a certain



degree of quality. Up-to-date test cases also helps keeping track of
the quality of the retrieved software pieces along the evolution of the
system.

These observations indicate that test cases can be useful interfaces to
code search. With respect to the search itself, test cases provide important
information for querying the desired feature, such as the signature of the
entry point operation. For example, consider the test cases for the Arabic to
Roman function presented before. The signature of the entry point operation
is String roman(int). From the test class we can also extract the name of the
class that contains the entry point: Util. In TDCS this type of information
can be used to search for a particular piece of code. For instance, the terms
‘roman’ and ‘util’ can be used as keywords, and the signature can be used
to match specific methods (entry points). The keywords help filtering out
the solution set to candidates that are more likely to implement the desired
functionality. The different types of information can furthermore be enabled,
disabled, or relaxed to produce more or less restrictive queries. For instance,
we might want to exclude the name of the class in the search, since it is
harder to find an entry point that matches both keywords than one that
matches only ‘roman’.

Figure 3 shows a basic TDCS process. To describe a missing feature
in the project, test cases are designed in the Integrated Development En-
vironment (IDE). The search facility can then be triggered and, based on
the information available on the test cases, a query is sent to a code search
service capable of processing it. In the IDE, the developer can explore the
results by integrating/testing and detaching them. To do that, a program
slicing service to provide self-contained code pieces and a repository access
service must be available at the Code Services side. Whenever the developer
feels satisfied with a particular code result, it can be left integrated to the
project. Detaching of a code result at any time can also be done.

There are two sides involved in TDCS: the IDE and the code services
infrastructure. Next we explain the requirements for a TDCS system in both
sides.

3.1. IDE support for TDCS

In the IDE: (1) test cases are designed, (2) test case-based search is per-
formed, (3) integration/detachment of code results is performed, and (4) test
case execution/analysis is performed.



Figure 3: TDCS process.

To write test cases in a systematic way, some test development framework
(such as JUnit for Java) must be supported by the IDE. To formulate test
case-based code queries, the IDE must support the extraction of information
contained in the test case modules. For instance, considering the example of
a JUnit test class presented before, we must be able to extract the signature
of the entry point method and the class name from the test class.

To integrate/detach code results, the IDE must support manipulation of
code structures (i.e., fields, methods, and classes) inside a project (such as
merging/copying code structures). To maintain the traceability of the inte-
grated code results, we must be able to identify each structure introduced
into the application from a search task. In this way the developer can always
tell whether a piece of the application comes from a search task or was im-
plemented by someone in the team. Moreover, this structure tracking is also
essential to make it possible the detachment of code results.

Finally, to perform test case execution and analysis, the IDE must support
some type of testing tool.

3.2. Code services support for TDCS

At the Code Services side: (1) code searches are performed, (2) code
slicing tasks are performed, and (3) repository accesses are performed. The
first feature is the search itself, which is based on the test case-queries men-
tioned before. The search engine must be capable of processing queries with
information about the code structure.



The second feature consists in being able to slice the source code to get
smaller self-contained pieces of code for a particular feature. For the remain-
der of this paper, the term slice will be used to refer to the result of this
type of slice. For instance, given a method m in a program, the slice of m
is a program containing m along with its dependencies such that the new
program will compile, and m will execute as it did for the original program.

Finally, the third feature consists in making available the access to the
code base. We need to access the code base to show snippets of the source
code in the IDE, for instance.

4. Working Example

We implemented a system with the requirements described above. In this
section we present a scenario example where two features – the Arabic to
Roman function described in Section 2 and an Integer to Ordinal conversion
function – are reused through TDCS, one of them using two implementation
options. We illustrate our approach by using CodeGenie, the Eclipse plugin
we implemented as the IDE part of TDCS (see Section 5).

4.1. Basic search

Consider the development of a document editing system. An important
functionality of such systems are counters for sections, enumerations, pages,
etc. The Arabic to Roman function discussed in Section 2.3 could be im-
plemented in such system to present counters as Roman numerals. There
are many ways of implementing this function, two examples would be: (1) a
static roman method in a Util class that receives an integer and returns the
corresponding Roman numeral in a string (such as the one defined by the
test cases in Figure 2); and (2) an instance roman method inside a Counter
class that returns the current counter value as a Roman numeral. Here we
follow the first option and later we explain how the second option could also
be used. The test cases for the static method implementation option were
partially presented in Figure 2.

After designing some ad hoc JUnit test cases, the user can trigger the
CodeGenie search facility by right-clicking on the test case class and select-
ing the CodeGenie Search menu option. Figure 4(a) shows the CodeGenie
Search menu option being triggered for the Arabic to Roman JUnit test
class. CodeGenie sends the query to Sourcerer which, in turn, returns code
results. The keywords are initially formed by the terms coming from the



method name and the class name. In the example, ‘util’ and ‘roman’ are
the initial keywords. By default every information on the test cases is used
to generate the query: class name, method name, and method signature.
After activating the search, the developer has the option to relax the query
by enabling/disabling the return type, parameter types, and name terms as
keywords.

(a) Search triggering menu.

(b) Integrated result.

(c) Snippet Viewer.

(d) Search View.

Figure 4: CodeGenie screenshots.



The CodeGenie Search View with the returned results for the referred
example is presented in Figure 4(d). From here, the developer can examine,
integrate, test, and detach results by right-clicking on them and selecting the
desired option. Green, red and yellow bullets are used to represent success-
ful, failing and yet to be tested results. These are also used to order results
accordingly. There is also a second-level ordering for successful results ac-
cording to the test execution time. When a search result is selected, its code
is presented in the Snippet Viewer (Figure 4(c)).

The Search View presented in Figure 4(d) refers to the state after inte-
grating and testing four results for the example in question (two other results
are shown as yet to be tested for the sake of completion). From these results,
two are successful (green bullets grouped at the top) and two fail (red bul-
lets grouped at the bottom). The important role of test cases to assure the
quality of the retrieved code can be seen in this example. The two failing
results are faulty implementations of the desired feature: one of them only
converts numbers in the range 1–5, and the other converts the number 1000
to ‘P’ instead of ‘M’. Figure 4(d) also shows the execution of the test set in
the JUnit plugin for the mentioned faulty result.

At this point the developer has the following options: (1) choosing one
of the green results (possibly after trying the other two yet to be tested
candidates); (2) relaxing the query to get more results; or (3) enhancing the
test set to further filter successful results. In the example, following (3),
the developer could create more test cases to test other types of inputs to
the Arabic to Roman function, for instance. In that case, test cases for the
numbers 0 and −20, that do not have equivalent Roman numerals, could
be created. For those numbers, the expected output could be to throw an
exception. In this example (note that, from the yet to be tested candidates
shown in Figure 4(d), one is successful and the other fails), after implementing
these additional cases, the number of green results are reduced to two, making
it easier for the developer to choose among them.

4.2. Query relaxation

Suppose the developer wants to add the feature of returning ordinal num-
bers given an integer in the same application. This function could be used to
show the counter as an ordinal number. Now following TDCS, the developer
should create test cases for such function. The test set could be the following:
{< 1, “1st” >,< 2, “2nd” >,< 3, “3rd” >,< 11, “11th” >,< 21, “21st” >}.
When we trigger the search, CodeGenie returns four results. However, none



of them pass the test cases because three are only returning the ordinal suf-
fix without the number in front (‘st’, ‘nd’, ‘rd’) and one is faulty against the
fourth test case (it returns ‘11st’ when it should be ‘11th’). Following the
query relaxation option, the developer might try to disable the use of the
name of the class (‘util’), since it might be filtering working results. When
the search is triggered again, ten results come up and one of them is success-
ful. Note that instead of relaxing the query to get more results, the developer
could instead refactor the test cases to accommodate the majority of the re-
sults encountered, since they had a slightly different implementation of the
function.

4.3. Instance methods

To explain how methods that manipulate fields can also be searched, next
we show how the second implementation option of the Arabic to Roman
function could be used. This example shows a feature being added to an
existing class in the developer’s project. Consider the implementation of the
Counter class presented in Figure 5. To search for an Arabic to Roman
instance method for this class, test cases have to be designed differently
because the roman method does not contain any parameter, it manipulates
the integer field of the Counter class. Figure 6 shows some test cases designed
for this implementation option. Note that the assertion is made against a
‘roman’ instance method that receives no parameters and returns the roman
numeral corresponding to the current counter value.

To search for this instance method with the current implementation of
CodeGenie, the user can right-click on the test class to trigger the search.
However, before integrating a result, the field in the local class must be
renamed according to the name of the field in the result, as shown in the
Snippet Viewer. In this way, when CodeGenie integrates the result, the
classes are merged so that the field in the local class corresponds to the field
in the reused code. For instance, in Figure 5 the integer field was renamed to
intValue to match the name of the field in a code result. After integrating the
results, all other operations are performed the same way. Figure 4(b) shows
the Counter class with an integrated Arabic to Roman instance method in
the developer’s project. The @FromSlice annotation is used to keep track of
the integrated code (see Section 5).



public class Counter {
private int intValue;

public Counter() {
intValue = 0;

}

public Counter(int num) {
intValue = num;

}

public int getValue() {
return intValue;

}

public void setValue(int value) {
intValue = value;

}

public void increment() {
intValue++;

}

public void decrement() {
intValue--;

}
}

Figure 5: Counter class.

public class RomanTesting
extends TestCase {

Counter n = new Counter(1);

public void testRoman1() {
assertEquals("I", n.roman());

}

...

public void testRoman2() {
n.setValue(4);
assertEquals("IV", n.roman());

}
...

Figure 6: Some of the test cases for the instance method implementation of the Arabic to
Roman function.

5. System Implementation

Our TDCS implementation comprises a plugin for the Eclipse IDE called
CodeGenie and an infrastructure called Sourcerer. CodeGenie provides tight



integration of the automated search facility with a developer’s environment
while leveraging all code services that Sourcerer provides4.

5.1. IDE Integration: CodeGenie [27, 28]

The IDE side of our TDCS implementation uses Eclipse, an extensible
platform for tool integration that provides several Java software development
services. Eclipse is suitable for the purposes at hand because it fulfills many
of the TDCS requirements discussed in Section 3.1. Moreover, the extensible
nature of Eclipse makes it easier to integrate the particular TDCS features.

The test case design part of CodeGenie is supported by JUnit, which is
fully integrated with Eclipse. JUnit test classes must be created to define the
desired features. Since the current entry point for a search task in CodeGenie
is a single method, test cases have to target at least one missing method
(which may be inside an existing or non-existing class in the current project).
Test cases similar to the ones presented in Figure 2 must be created. There
can be multiple missing methods inside the test cases, though the current
version of CodeGenie will search for one at a time.

Once the test class is created, CodeGenie is ready to extract informa-
tion about the desired feature. The tool extracts the interface of the missing
method, and the names of the missing method and its class. It does that
by analyzing the compiler errors present in the test cases due to the missing
method or class. The Abstract Syntax Tree (AST) of the test class is ex-
plored to extract the return type and argument types of the missing method.
The names of the missing method and class are used as initial keywords and,
for these keywords, camel-case splitting (e.g., a class named BinaryTree gen-
erates keywords ‘binary’ and ‘tree’) and heuristics based on common Java
naming conventions are used (such as splitting based on numbers – e.g.,
roman2numeral generates ‘roman’, ‘2’, and ‘numeral’ – and non-alphabetic
characters – e.g., binary tree generates ‘binary’ and ‘tree’). After gather-
ing all information, CodeGenie formulates queries that can be processed by
Sourcerer. These queries contain three parts: (1) keywords that must be
present in the full qualified name of the entry point method; (2) return type of
the entry point method; and (3) parameter types of the entry point method.
For example, given a test case with the following assertion:

4The CodeGenie plugin, supporting material, and some of the test cases used for the
applicability study (Section 6.1) are available at http:\\sourcerer.ics.uci.edu\
codegenie.



assertEquals(“trevni”, Util.invert(“invert”))

CodeGenie formulates the following query:

fqn contents:(util invert)
m ret type contents:(String)
m sig args sname:String

The query above means: “look for an entry point method that contains
the strings ‘util’ and ‘invert’ somewhere in the full qualified name, returns a
value of type String, and receives a parameter of type String”. Queries are
different if query relaxation options are used. For instance, if the name of
the class is disabled, the fqn contents part of the query will only contain the
‘invert’ string; if the return type is disabled, the m ret type contents part is
not generated. The format of these queries is defined by the programming
interface provided by the Sourcerer search service. Further details about this
service are available elsewhere [9, 5].

For the integration and detachment of code slices, CodeGenie applies the
merge by name strategy as used by Hyper/J [34]. It simply copies all classes
inside the chosen code result into the developer’s project and merges classes
with coincident names. The merging is done by a union operation on the
classes’ structures (i.e., all fields, methods, and inner classes of the original
class and of the added class are present in the resulting class). If there are
coincident methods, fields, or inner classes, the structures that were already
present in the target project have priority over the ones being added. Before
a code result is integrated with the current project, the name of the entry
point method and of the class that contains it are automatically refactored
according to the names present in the test cases.

Java annotations are used to track the integrated structures inside the
developer’s project. Each code structure added to the developer’s project
is annotated with @FromSlice, indicating from which code result it comes
from. A name element is used to identify the code slice. In this way, when
a detachment operation is triggered, CodeGenie can remove all code struc-
tures coming from the related slice by analyzing the annotations. Note that
if an added code structure (e.g., a method) is changed by the user, a detach-
ment operation still removes the structure (e.g., the related method), since
it originally refers to integrated code. If the user again decides to integrate
the same code structure, it is integrated as the original version in the code
repository. In this way, if the user wants to consider the added code structure



a definitive part of the project, he can simply remove the annotation. This
would prevent CodeGenie from detaching the code structure in the future.

To test the woven project we use the JUnit plugin that comes with Eclipse.
CodeGenie communicates with this plugin so that when search results are
integrated and tested, testing results are updated in the Search View (as
shown in Figure 4(d)).

5.2. The Sourcerer Infrastructure

Sourcerer is an infrastructure for large scale analysis and indexing of
source code [4, 8, 29]. It has been designed to support software applications
on top of the services it provides. Figure 7 shows the general architecture of
Sourcerer. General description of Sourcerer’s architecture and its repository
is available in [8, 29].

Figure 7: Sourcerer System Architecture (with CodeGenie and its required resources high-
lighted).

Sourcerer crawls the Internet looking for source code from various sources
such as open source code repositories, public web sites and version control
systems. The source code obtained from the Internet is analyzed, parsed,



and stored in the system in various forms: (i) Managed Repository keeps a
versioned copy of the original contents of the source code and related artifacts
such as libraries; (ii) Code Database stores the entire code-graph of all the
code parsed maintaining full information about the structural dependencies
in the code; and (iii) Code Index stores keywords extracted from the code
during parsing for efficient retrieval.

All the artifacts managed and stored in Sourcerer are accessible through
a set of Web-services. The details of these services are available elsewhere [9,
35]. In particular, CodeGenie uses these three services:

1. Code Search: This service implements the query processing facility.
Client applications such as CodeGenie can send queries as combina-
tion of terms and fields (such as the one presented before) and the
service returns a result set with detailed information on the entities
that matched the queries. The query language is based on Lucene’s
implementation [6] and our extended query parser supports different
query forms that CodeGenie requires to perform.

2. Repository Access: This service provides access to the Managed Repos-
itory in Sourcerer. All the code artifacts, libraries, and meta-data are
accessible using this service. The Snippet Viewer (as shown in Fig-
ure 4(c)), for example, uses this service to request the snippets of the
results to be viewed.

3. Program Slicing: This service implements the program slicing require-
ment for TDCS described earlier. Clients can request the slice by speci-
fying an entry point of the program. In the case of CodeGenie the entry
point is a method. The result from the slicer is a zip file, containing
the newly fabricated program as well as some meta-data detailing any
unresolved external references. Starting with any method in the Code
Database, the slicer extracts all classes, interfaces, methods and fields
necessary to ensure correct compilation and execution of the initial
method. The slicer computes the transitive closure of certain relations
(such as method and constructor calls and field accesses) based on
the code dependency graph stored in the database, so no further code
analysis is needed. Further analysis is done to ensure that the class
hierarchy remains intact in cases where it is relevant, and that imple-
mented interfaces are pulled in when appropriate. For example, if two
classes are extracted and one of them is a descendant of the other, then
the extends relation will be extracted, as well as all classes between



them in the hierarchy. A conservative approach is taken with respect
to relations terminating outside of the project (i.e., library calls), so the
explicit types found in these relations are fully extracted. Information
regarding these library accesses are included as meta-data.
For the purposes of search result extraction, it is beneficial to decrease
the granularity in the standard definition (of slicing) from statements
to code structures (methods, fields, classes, etc.), as that is the small-
est unit of functionality that can be searched for. Furthermore, the
standard slicing criterion can be relaxed to instead just specify a code
structure, ignoring the variables entirely. With these modifications,
computing in effect an approximate static forward slice enables the ex-
traction of a specified method or class as well as everything on which
it transitively depends. The slice is only approximate, as computing
the true minimal slice is unsolvable. More information on Sourcerer’s
slicing service can be found elsewhere [35, 36].

6. Evaluation

Our evaluation of TDCS in the context of auxiliary functionality con-
sists of two parts. First, we explored CodeGenie with a number of features,
checking whether we could find working implementations for them. Second,
we conducted a controlled experiment with 34 senior Computer Science stu-
dents to evaluate the performance of CodeGenie against a well-known code
search engine – Google Code Search (CS) [3] – in the process of pragmatic
code search and reuse. To gather additional evidence on the performance
of CodeGenie we also replicated the experiment with 7 graduate students.
We chose Google CS for the comparison because it is a well known search
engine and it represents other similar code search web applications. To check
whether it was worth reusing the features using code search instead of sim-
ply implementing them, we also asked the students to implement the fea-
tures manually, without the aid of any searching tool. Before and after the
performance studies, we also conducted surveys to collect the impressions of
students while using CodeGenie. Results are also summarized in this section.

6.1. Applicability study

We used CodeGenie to search several features suggested by members of
our group as relevant functionality they would like to reuse (by informally
surveying them), from a list of common functionality used by Hoffmann et



al. [17] in a code search study5, and from examples used by Reiss [40] to
illustrate his approach. Note that we selected features that could not be
reused by simply calling library functions available in the Java distributions:
they should require at least a minimum of 10 lines of code. To provide
an idea of size, we collected the average number of lines of code (LOC) of
the working candidates, when integrated to the workspace. We measured
the number and percentage (#adeq., %adeq.) of results that could be
reused after being integrated to the developer’s project and the number and
percentage of results that could compile and run, though did not implement
the feature according to the tests (#run., %run.). Results are shown in
Table 1 (features are sorted by their size in LOC).

These numbers are an evidence that TDCS using CodeGenie is not only
feasible but also effective for auxiliary functionality, since we were able to
reuse matching results for all 34 sample features. Note that, on average and
per query, 71.75% of the matched candidates were reusable features that
were successful against the test case queries. With respect to the amount
of running results, on average, 95.43% of all results compiled and ran, an
evidence that it is possible to slice, integrate, and compile features in the
proposed way. The average number of candidates per query was 3.21, an
evidence of the preciseness of TDCS (few candidates per query).

Some of the results required minor manual fixes before they could be
compiled (for instance changing a private method to public). However, less
than 10% of the results presented in Table 1 required this type of intervention.

6.2. Performance study

In this experiment, each of the 40 senior Computer Science students was
asked to find/implement three features and have them working in an Eclipse
workspace, using the following approaches: (1) CodeGenie, (2) Google Code
Search, and (3) Manual, i.e., implementing it by hand. The students had
medium to advanced experience in Java and Eclipse (medium on average,
according to a survey given to them). The three features they were supposed
to find/implement were the following: (1) Conversion of Arabic numbers to
Roman numerals (such as in the example used before); (2) Complement of
DNA strings using the rule: adenine – thymine, cytosine – guanine (when
‘a’ or ‘A’ is found, change it to ‘t’ or ‘T’, and vice-versa, and so on); and

5Sample queries were obtained through personal communication with the authors.



Table 1: Results of feature searches using CodeGenie.
Feature total #run. #adeq. LOC%run. %adeq.
Joining a list of strings in a single string 6 6 2 12 33.33 100.00
Trimming left spaces from a string 4 4 4 13 100.00 100.00
Extracting a file name from a full path 2 2 1 17 50.00 100.00
Computing the largest common prefix of two strings 2 2 2 20 100.00 100.00
Decoding a URL 1 1 1 23 100.00 100.00
Capitalizing first letters of a string 1 1 1 24 100.00 100.00
Converting normal strings to hexadecimal strings 6 4 2 27 33.33 66.67
Removing carriage return / line feed from strings 4 4 2 31 50.00 100.00
Sharpening an image 1 1 1 33 100.00 100.00
Capturing the screen into an image 1 1 1 35 100.00 100.00
Saving an image in JPG format 1 1 1 35 100.00 100.00
Converting arabic numbers to alphanumerics 6 6 1 38 16.67 100.00
Converting hyphenated strings to camel case strings 2 2 1 38 50.00 100.00
Generating the complementary DNA seq. 3 3 1 40 33.33 100.00
Converting camel case strings to phrases 3 3 1 42 33.33 100.00
Computing the MD5 hash of a string 10 9 9 45 90.00 90.00
Encoding Java strings for HTML displaying 2 2 2 48 100.00 100.00
Scaling an image 1 1 1 49 100.00 100.00
Converting byte arrays to hexadecimal strings 2 2 2 50 100.00 100.00
Filtering folder contents with specific file types 1 1 1 50 100.00 100.00
Rotating an image 2 2 1 50 50.00 100.00
Generating the reverse complementary DNA seq. 2 2 2 53 100.00 100.00
Encrypting a password 2 2 2 55 100.00 100.00
Blurring an image 2 2 2 56 100.00 100.00
Printing formatted strings for elapsed times given in ms 2 2 1 68 50.00 100.00
Converting arabic numbers to roman numerals 6 6 2 72 33.33 100.00
Converting hexadecimal strings to normal strings 6 4 2 72 33.33 66.67
Sorting objects using QuickSort 4 2 2 74 50.00 50.00
Computing the Easter holiday for a given year 2 2 1 101 50.00 100.00
Counting lines of a text file 1 1 1 103 100.00 100.00
Computing the Soundex hash of a string 8 8 8 108 100.00 100.00
Unzipping files 7 5 3 110 42.86 71.43
Zipping files 5 5 2 118 40.00 100.00
Parsing a CSV file 1 1 1 240 100.00 100.00
Avg 3.21 2.49 1.97 57.35 71.75 95.43

(3) Reversion of strings (for instance, given ‘CodeGenie’, it should return
‘eineGedoC’). Before starting the experiment, we ensured that each feature
could be found/extracted using both CodeGenie and Google CS by trying
them. We did this because our main concern was the method of reuse pro-
posed by each approach, and not the size of the code database. We also
ensured that the features could be implemented by any undergraduate stu-
dent in relatively short time, by previously analyzing the implementations.

For CodeGenie, each student should create a test case class for the de-
sired feature, trigger the search and explore the results, until satisfied with
a working implementation. For Google CS, they should go to the website,
look for implementations, and extract them by copying and pasting results



into the workspace, until satisfied with a working implementation. No test
cases were required for this approach. For the manual approach they should
implement the feature themselves without the aid of any code search facility,
until satisfied with a working implementation. No test cases were required
for this approach either.

The time spent by each student in the whole process of finding/integrat-
ing/implementing a feature for each approach was recorded. For instance,
for CodeGenie, we also considered the time spent to create test cases. Each
student implemented each feature using one of the approaches at a time and
the assignment of features and approaches was randomized among them, so
that combinations were evenly distributed. We did this to cancel the effects
of the difference among the features and of the order of application of the
approaches. After gathering the data, some outliers were removed to obtain
homogeneity (that is why only 34 results are shown). We believe these out-
liers were due to the inexperience in Java or Eclipse of some students. Table
2 shows the results of our experiment.

CodeGenie was the fastest approach for 20 out of 34 students (59%),
and faster than Google CS for 22 students (66%). On average, CodeGenie
was around 50% faster than both Google CS and the manual approach. Al-
though the means differ visually, statistically speaking, such difference can
be significant or not. To test whether the means do differ statistically, we
must apply a t-test under the null hypothesis that the means are equal. If
they are significantly unequal, the reached p-value has to be less than a
threshold (usually set to 0.05, that is, a 95% confidence level). In our case,
since the same students applied the different approaches, we can make use
of paired t-tests. Therefore, to check whether the time means differed sig-
nificantly, we conducted a Welch two sample paired t-test to compare the
means, two by two. With 95% confidence level, the tests did indicate a sig-
nificant difference between the means, both for CodeGenie against Google CS
(p-value = 0.01548) and for CodeGenie against the manual approach (p-value
= 0.005006). Since the Welch t-test assumes normality, we also conducted a
Wilcoxon test, that does not require this assumption. Again with 95% con-
fidence level, the Wilcoxon test also indicated a significant difference among
the means, both for CodeGenie against Google CS (p-value = 0.03028) and
for CodeGenie against the manual approach (p-value = 0.004964).

Note that students were not asked to test the resulting application while
using the Google CS and manual approaches, even though they did it for
CodeGenie (since creating test cases is part of the approach itself). If test



Table 2: Time (in minutes) spent to find/implement a feature in each approach by each
student.

Subject CodeGenie Google CS Manual
1 15.00 30.00 40.00
2 4.00 6.00 9.00
3 25.00 10.00 20.00
4 1.61 6.83 1.91
5 30.00 10.00 3.00
6 3.00 5.00 23.00
7 8.00 10.00 10.00
8 10.00 8.00 15.00
9 6.00 11.00 16.00
10 5.48 4.51 5.45
11 8.00 3.00 10.00
12 10.00 40.00 30.00
13 12.00 30.00 31.00
14 22.00 14.00 15.00
15 8.00 6.00 15.00
16 2.55 4.50 23.35
17 4.50 25.00 19.00
18 4.00 6.00 8.00
19 4.25 5.51 15.00
20 5.00 25.00 22.00
21 7.00 5.00 17.00
22 15.00 40.00 10.00
23 12.00 8.00 6.00
24 2.50 3.33 11.00
25 5.00 10.00 10.00
26 5.00 20.00 15.00
27 7.00 30.00 25.00
28 20.00 40.00 15.00
29 5.00 10.00 15.00
30 6.00 8.00 25.00
31 10.00 10.00 5.00
32 19.00 15.00 9.00
33 27.00 43.00 35.00
34 11.00 8.00 6.00

Avg 9.996765 15.02 15.756176

cases were required for the other approaches the difference among the means
would probably be greater. Moreover, code retrieved using Google CS and
implemented manually in the experiment could contain faults that would
possibly be found if tested. For example, by examining an implementation
reused by a student through a Google CS search (the Arabic to Roman
conversion), we noticed that it did did not pass the test cases designed by
another student to search the same feature using CodeGenie (it did not deal
with the number 0, which does not have a Roman counterpart); that is, it
contained a fault that was not revealed because the retrieved code was not
tested.



6.2.1. Replication with graduate students

To gather more evidence about the performance of CodeGenie, we decided
to replicate the experiment with graduate students. However, at this time
we were able to gather only 7 – 5 MSc and 2 PhD – student volunteers, so we
did not expect to reach statistically significant results (only exploratory evi-
dence to support or reject the results achieved for undergraduate students).
Again, the students had medium to advanced experience in Java and Eclipse
(medium on average, according to a survey given to them), and the same
procedure and set of features were used to be able to compare results. Table
3 shows the results of the replicated study.

Table 3: Time (in minutes) spent to find/implement a feature in each approach by each
student.

Subject CodeGenie Google CS Manual
1 11.00 9.00 60.00
2 9.00 8.00 11.00
3 5.24 4.27 7.5
4 9.60 5.94 16.67
5 10.00 19.00 7.00
6 5.37 5.55 37.08
7 4.71 9.55 22.45

Avg 7.8457 8.7585 23.1000

On average, CodeGenie was slightly faster than Google CS – by 0.92 min-
utes –, and more than three times faster than the manual approach. At this
time, CodeGenie was the fastest approach for 2 of the students (28%), and
faster than Google CS for other 3 students (43%). Note that when Code-
Genie was faster than Google CS, it was faster by 4.67 minutes, on average;
while when Google CS was faster than CodeGenie, it was faster by 1.9 min-
utes, on average. To check wether the time means differed significantly, we
again conducted a Welch two sample paired t-test to compare the means,
two by two. As expected, due to the small sample size, with 95% confidence
level, the difference between the performance of CodeGenie and Google CS
was not significant (p-value = 0.2783). With respect to the performance of
CodeGenie against the manual approach, the test did indicate a significant
difference (p-value 0.04195). Since the Welch t-test assumes normality, as
commented before, we conducted a Wilcoxon test for the difference between
the performance of CodeGenie and the manual approach. The test indicated
a significant difference between the means (p-value = 0.04688).

Although at this time the sample size of subjects was limited – which has
impacted on the significance of the results –, we can say that the study sup-



ports the evidence achieved in the main study with undergraduate students,
since CodeGenie performed slightly better than Google CS and significantly
better than the manual approach, on average.

Further analysis of both undergraduate and graduate students’ data is
available elsewhere [10].

6.3. Threats to validity

Both applicability and performance studies are exploratory and present
limitations that must be considered when interpreting the results. The pri-
mary threats to validity are related to subject representativeness, affecting
the ability of our results to generalize. The studies were applied only to
small features – 57.35 lines of code on average – and it is still unclear how
TDCS would scale for larger ones. In any case, in this paper we target the
reuse of auxiliary functionality, which does seem to be handled adequately
by TDCS. Moreover, some of the features explored in the applicability study
were larger – more than 100 lines of code in two or more classes (see Table
1) –, which indicates that with improvements it may be possible to handle
larger features.

The performance study was applied to senior and graduate Computer
Science students, which does not guarantee the generalization of the results
to professionals. However, some authors suggest that there are cases where
students can provide an adequate model of the professional population [21,
38]. Studies that show opposite trends between these groups sometimes have
concluded that the effectiveness of techniques depended to a large extent on
skill (for instance, [7]). Intuitively, this evidence could work in favor of the
presented approach, since more experienced developers could probably make
a better use of TDCS (for instance, developers with experience in developing
test cases and using JUnit will probably reach good results faster, since they
will require less time in this step). However, more empirical evidences should
be attained to be able to better generalize our findings.

6.4. Usage survey

We also surveyed the students to collect their opinions on pragmatic code
search and reuse through CodeGenie and Google CS. Most of the undergrad-
uate students preferred using CodeGenie over Google CS in the search/reuse
tasks (61%). The other 39% preferred either implementing the features
by hand, or using Google, because they were more familiar with these ap-
proaches. On the other hand, most of the graduate students preferred using



Google CS (57%) over CodeGenie (43%), mainly because they were more
familiar with it. Moreover, most graduate students did not explore CodeGe-
nie the best way: since it was the first time they were using the tool, some
features – such as the Snippet Viewer – were not used. This indicated that
training and practice is required to make developers fully explore the tool.

The main limitation of Google CS indicated by the students was having
to manually navigate through results, extracting dependencies and copying
and pasting code into the workspace without knowing whether it would com-
pile/work. Moreover, some of them also found restrictive to search for code
using keywords only. We believe that these are the main disadvantages of
Google CS – used by itself – that makes CodeGenie perform better most of
the times.

We also asked the students to evaluate the usability of CodeGenie by
giving it one of the following grades: Great, Very Good, Good, Fairly Good,
Bad, Very Bad. Among the undergraduate students, 10 (29%) graded it
Great; 11 (32%) graded it Very Good; 8 (24%) graded it Good; and the
remaining 5 (15%) graded it Fairly Good. Among the graduate students, 5
graded it Very Good (71.4%), 1 graded it Good (14.3%), and 1 graded it
Fairly Good (14.3%).

We collected the opinions of the students on limitations of the tool for
future enhancements. For instance, one of the students found the feedback
when testing the results hardly noticeable (only the label of the related search
result is changed); other students found somehow restrictive having to choose
adequate names for the desired class/method to match more results. Still
with respect to usability and limitations of the tool, while conducting the
replication of the performance study – described in Section 6.2.1 –, we asked
some of the students to record a video of their usage of CodeGenie. We then
analyzed the videos to check how the tool was used, and how it could be
further enhanced. One of our main findings in this analysis was that the
experience in using the required technologies – such as JUnit – is of great
impact on the performance. Moreover, we also noted that some students
spent considerable time in small technical issues, such as how to trigger the
CodeGenie search menu and how to create a test class suitable for searching
(i.e., with a missing class or method). All feedbacks will be used for future
enhancements of the tool and also to possibly generate adequate training
material.



7. Related Work

Since the late 1960s, software reuse has been a well advocated and widely
explored topic in software engineering [31, 25, 32, 40]. There are several as-
pects of reusability that make it a hard problem, including creating reusable
code, finding code to reuse, and adapting reusable code to the new applica-
tion [40]. Several approaches to tackle such aspects have been proposed, but
only recent work explore the vast quantity of code available in open source
repositories.

During the early 1980s, several advances in the software reuse field origi-
nated in Freeman’s research group [15], and also in industrial reuse projects
in Japan, the U.S., and Europe [16]. More related to this paper, in the
1990’s, program semantics was commonly explored as a means to enhance
the search of reusable components [40]. Zaremski et al. [50] presented a
method for achieving this goal by using signature information derived from
components. This approach was later extended to matching more formal
semantics using λprolog and Larch-based specifications [41].

Podgurski & Pierce [37] developed Behavior Sampling (BS), a retrieval
technique which executes code candidates on a searcher-supplied sample of
operational inputs and compares the outputs to outputs provided by the
searcher. Differently from TDCS, inputs for the desired functions are ran-
domly generated and expected outputs have to be supplied by users. TDCS
implements one of the extensions considered by Podgurski & Pierce to im-
prove BS: the ability to retrieve code based on arbitrary tests. PARSEWeb [46]
is a tool that combines static analysis, text-based searching, and input-output
type checking for a more effective search.

According to Reiss [40], all these early techniques did not really succeed
because either they require too little specification of the desired feature, or
too much. Signature or type matching used by themselves do not seem to be
very effective, although PARSEWeb shows that in combination with textual
search they can provide more interesting results. Full semantic matching
requires the specification of too much information and thus is quite difficult
to accomplish. Our approach uses test cases, which are generally easy to
check and easier to provide. In a recent work, Reiss [40] also incorporates
the use of test cases and other types of low-level semantics specifications
to source code search. He also implements various transformations to make
available code work in the current user’s context. However, in his approach,
there is no slicing facility and therefore only a single class can be retrieved



and reused at a time. Moreover, the presented implementation is a web
application, which also requires code results to be copied and pasted into the
workspace in an ad hoc way. CodeGenie has the advantage of being tightly
integrated with the IDE: code candidates can be seamlessly integrated to –
and detached from – the workspace.

The idea of using test cases to search and reuse software pieces has also
been explored by Hummel et al. [22]. The presented approach – named
extreme harvesting – requires a basic implementation of the class structure
(a stub) before searching, which is not required by TDCS (only test cases are
needed). With respect to the slicing facility, which prevents developers from
retrieving pieces of software unrelated to the desired functionality, it is not
clear whether the authors’ infrastructure provide this type of capability. On
the other hand, Sourcerer, the infrastructure used by CodeGenie, maintains
code relations in its database, which allows it to support a fine-grained slicing
of candidate features. Recently, the same group has proposed an evolution
of their approach in a tool named CodeConjurer [23]. This implementation
presents several enhancements with respect to the search interface in the
form of a new type of proactive reuse recommendation. Moreover, the code
repository used by CodeConjurer is very large, maintaining over 10 million
indexed files. However, to the best of our knowledge, the slicing facility
presented is still limited in comparison with Sourcerer, which computes a
more fine-grained slice (i.e., in the method level). This is due to the way
Sourcerer manages code in its database, recording detailed information about
the relations among modules [35, 29].

Program slicing has been used before for purposes of assisting code reuse.
Our approach is similar to many others in its reliance on program depen-
dency graphs. Transform slicing [26] is one such approach, and is designed
to extract reusable functions from existing programs. The primary differ-
ence lies in our relaxation of the slicing criterion, while transform slicing
instead further constraints it. Although not program slicing, Holmes’s fea-
ture sketching approach to unanticipated reuse allows the user to manually
explore dependencies [18]. The slicer presented here performs similar tasks
automatically.

Modern software engineering tools are bringing more sophisticated search
capabilities into the development environment extending the traditionally
limited browsing and searching capabilities [19, 30, 44, 39, 42]. These tools
vary in terms of the features they provide but some common ideas that
are prevalent among them are the use of the developer’s current context



to generate queries and the integration of ranking techniques for the search
results.

In summary, TDCS support in CodeGenie reduces some drawbacks of
code-based reuse while still retaining its basic advantage of having a small
cognitive distance [25]. The problem of selection, specialization and integrat-
ing that exists in Code-scavenging [25] techniques of reuse is greatly reduced
by the automation CodeGenie provides; in particular, with test-driven search
and validation of code results for expected behavior.

8. Conclusion

In this paper we have presented an approach to source code search and
pragmatic reuse based on test cases. To provide evidence of the feasibility
of TDCS, we implemented CodeGenie and performed an exploration with 34
examples of auxiliary functionality. We also conducted a controlled exper-
iment with 41 students to evaluate the performance of CodeGenie against
Google Code Search and a manual approach in the reuse of auxiliary func-
tionality. While these studies remain exploratory, they provide evidence of
the feasibility and good performance of TDCS for this kind of feature.

In the future we intend to study the scalability of TDCS, exploring the
reuse of larger and more general functionality. Moreover, we also want to
improve our tool to make it more effective. For instance, we plan to extend
CodeGenie to make it automatically test candidate results. Another consid-
ered extension is enhancing the search mechanism to allow matches based on
synonyms and common code abbreviations (for example, DB for database),
and also support search for aspects (as in aspect-oriented programming), other
types of crosscutting modules, and test code. Other enhancements suggested
by the students involved in the performance study will also be taken into
account.

The way test cases should be designed in TDCS with respect to the range
of tested inputs is also an important issue. As commented in Section 2, in
TDD test cases are usually low level and no type of formal testing criteria is
used [14]. This is because test cases are used primarily as a design decision
facility [11]. This design decision aspect of test cases is also useful to TDCS,
because it supports the search of specific self-contained modules. However, to
enhance confidence in the retrieved code, we could design test cases in a more
systematic way. Thus, we also consider the integration of testing criteria such
as equivalence partitioning [33] to TDCS to deal with this limitation. This



would obviously increase the time required to start a search, so a balance
between completeness and agility must be carefully studied.

Acknowledgements

We thank Ellen Barbosa, Pierre Baldi, Ricardo Morla, and Mario Andrade
for their contribution to this project; Eclipse Innovation Grant, CNPq and
FAPESP for financial support.

References

[1] Scrapheap Challenge Workshop, OOPSLA 2005. http://www.
postmodernprogramming.org/scrapheap/workshop.

[2] Koders web site. http://www.koders.com.

[3] Google Code Search. http://www.google.com/codesearch.

[4] Sourcerer web site. http://sourcerer.ics.uci.edu.

[5] Sourcerer Web-services. http://sourcerer.ics.uci.edu/services.

[6] Lucene web site. http://lucene.apache.org/.

[7] E. Arisholm and D. Sjøberg. A controlled experiment with professionals
to evaluate the effect of a delegated versus centralized control style on
the maintainability of object-oriented software. Technical report, Simula
Research Laboratory, June 2003. (available at: http://www.simula.no/
photo/tr20036sep10.pdf).

[8] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and
C. Lopes. Sourcerer: a search engine for open source code support-
ing structure-based search. In OOPSLA ’06: Comp. to the 21st ACM
SIGPLAN OOPSLA, pages 681–682, New York, NY, USA, 2006. ACM
Press.

[9] S. Bajracharya, J. Ossher, and C. Lopes. Sourcerer: An internet-scale
software repository. In SUITE ’09: Proceedings of the 2009 ICSE Work-
shop on Search-Driven Development-Users, Infrastructure, Tools and
Evaluation, pages 1–4, Washington, DC, USA, 2009. IEEE Computer
Society.



[10] S. K. Bajracharya. Facilitating Internet-Scale Code Retrieval. PhD
thesis, University of California Irvine, September 2010.

[11] K. Beck. Test Driven Development: By Example. Addison-Wesley Pro-
fessional, November 2002.

[12] R. V. Binder. Testing object-oriented systems: models, patterns, and
tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1999.

[13] R. Cottrell, R. J. Walker, and J. Denzinger. Jigsaw: a tool for the
small-scale reuse of source code. In ICSE Companion ’08: Companion
of the 30th Int’l Conf. on Softw. Eng., pages 933–934, New York, NY,
USA, 2008. ACM.

[14] H. Erdogmus, M. Morisio, and M. Torchiano. On the effectiveness
of the test-first approach to programming. IEEE Trans. Softw. Eng.,
31(3):226–237, 2005.

[15] P. Freeman. Reusable software engineering: Concepts and research di-
rections. In Proceedings of the Workshop on Reusability in Programming,
pages 129–137, 1983.

[16] H. Gall, M. Jazayeri, and R. Klösch. Research directions in soft-
ware reuse: where to go from here? SIGSOFT Softw. Eng. Notes,
20(SI):225–228, 1995.

[17] R. Hoffmann, J. Fogarty, and D. S. Weld. Assieme: finding and lever-
aging implicit references in a web search interface for programmers. In
UIST ’07: Proc. of the 20th annual ACM symposium on User interface
software and technology, pages 13–22, New York, NY, USA, 2007. ACM.

[18] R. Holmes. Unanticipated reuse of large-scale software features. In ICSE
’06: Proc. of the 28th Int’l conference on Softw. Eng., pages 961–964,
New York, NY, USA, 2006. ACM Press.

[19] R. Holmes and G. C. Murphy. Using structural context to recommend
source code examples. In ICSE ’05: Proceedings of the 27th interna-
tional conference on Software engineering, pages 117–125, New York,
NY, USA, 2005. ACM Press.



[20] R. Holmes and R. J. Walker. Supporting the investigation and planning
of pragmatic reuse tasks. In ICSE ’07: Proc. of the 29th Int’l Confer-
ence on Softw. Eng., pages 447–457, Washington, DC, USA, 2007. IEEE
Computer Society.

[21] M. Höst, B. Regnell, and C. Wohlin. Using students as subjects – a
comparative study of students and professionals in lead-time impact
assessment. Emp. Softw. Eng., 5:201–214, 2000.

[22] O. Hummel and C. Atkinson. Agile Processes in Software Engineering
and Extreme Programming, chapter Supporting Agile Reuse Through
Extreme Harvesting, pages 28–37. Springer-Verlag, 2007.

[23] O. Hummel, W. Janjic, and C. Atkinson. Code conjurer: Pulling
reusable software out of thin air. IEEE Software, 25(5):45–52, 2008.

[24] IEEE. IEEE Standard Glossary of Software Engineering Terminology.
New York, 1990. IEEE Computer Society Press.

[25] C. W. Krueger. Software reuse. ACM Comput. Surv., 24(2):131–183,
1992.

[26] F. Lanubile and G. Visaggio. Extracting reusable functions by flow
graph-based program slicing. IEEE Trans. Softw. Eng., 23(4):246–259,
1997.

[27] O. A. L. Lemos, S. Bajrachary, and J. Ossher. Codegenie: a tool for
test-driven source code search. In OOPSLA ’07: Comp. to the 22nd
ACM SIGPLAN OOPSLA, pages 917–918, New York, NY, USA, 2007.
ACM.

[28] O. A. L. Lemos, S. Bajrachary, J. Ossher, P. C. Masiero, and C. Lopes.
Codegenie: using test-cases to search and reuse source code. In ASE
’07: Proc. of the 22nd IEEE/ACM Int’l conference on Automated Softw.
Eng., pages 525–526, New York, NY, USA, 2007. ACM.

[29] E. Linstead, S. Bajracharya, T. Ngo, P. Rigor, C. Lopes, and P. Baldi.
Sourcerer: mining and searching internet-scale software repositories.
Data Mining and Knowledge Discovery, 18(2):300–336, Apr. 2009.



[30] D. Mandelin, L. Xu, R. Bod́ık, and D. Kimelman. Jungloid mining:
helping to navigate the api jungle. In PLDI ’05: Proceedings of the
2005 ACM SIGPLAN conference on Programming language design and
implementation, pages 48–61, New York, NY, USA, 2005. ACM Press.

[31] M. D. McIlroy. Mass produced software components. In P. Naur and
B. Randell, editors, Proc. of NATO Softw. Eng. Conference, pages
138–150. Garmisch, Germany, 1969.

[32] H. Mili, F. Mili, and A. Mili. Reusing software: Issues and research
directions. IEEE Trans. Softw. Eng., 21(6):528–562, 1995.

[33] G. J. Myers, C. Sandler, T. Badgett, and T. M. Thomas. The Art of
Software Testing. John Wiley & Sons, 2nd. edition, 2004.

[34] H. Ossher and P. Tarr. Hyper/j: multi-dimensional separation of con-
cerns for java. In ICSE ’01: Proc. of the 23rd Int’l Conference on Softw.
Eng., pages 821–822, Washington, DC, USA, 2001. IEEE Computer So-
ciety.

[35] J. Ossher, S. Bajracharya, and C. Lopes. SourcererDB: An aggre-
gated repository of statically analyzed and cross-linked open source java
projects. In IEEE, editor, MSR ’09: Proc. of the 6th IEEE Working
Conference on Mining Software Repositories, pages 183–186, 2009.

[36] J. Ossher, S. K. Bajracharya, and C. V. Lopes. Automated depen-
dency resolution for open source software. In MSR ’10: Proc. of the
7th International Working Conference on Mining Software Repositories
(Co-located with ICSE 2010), pages 130–140. IEEE, 2010.

[37] A. Podgurski and L. Pierce. Retrieving reusable software by sampling
behavior. ACM Trans. Softw. Eng. Methodol., 2(3):286–303, 1993.

[38] A. Porter and L. Votta. Comparing detection methods for software
requirements inspection: A replication using professional subjects. Emp.
Softw. Eng., 3:355–380, 1995.

[39] D. Poshyvanyk, A. Marcus, and Y. Dong. JIRiSS - an eclipse plug-in
for source code exploration. In ICPC ’06: Proceedings of the 14th IEEE
International Conference on Program Comprehension, pages 252–255,
Washington, DC, USA, 2006. IEEE Computer Society.



[40] S. P. Reiss. Semantics-based code search. In ICSE ’09: Proceedings of
the 2009 IEEE 31st International Conference on Software Engineering,
pages 243–253, Washington, DC, USA, 2009. IEEE Computer Society.

[41] E. J. Rollins and J. M. Wing. Specifications as search keys for soft-
ware libraries. In International Conference on Logic Programming, pages
173–187, 1991.

[42] N. Sahavechaphan and K. Claypool. Xsnippet: mining for sample code.
In OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN con-
ference on Object-oriented programming systems, languages, and appli-
cations, pages 413–430, New York, NY, USA, 2006. ACM Press.

[43] S. E. Sim, C. L. A. Clarke, and R. C. Holt. Archetypal source code
searches: A survey of software developers and maintainers. In IWPC,
page 180, 1998.

[44] R. Sindhgatta. Using an information retrieval system to retrieve source
code samples. In L. J. Osterweil, H. D. Rombach, and M. L. Soffa,
editors, ICSE, pages 905–908. ACM, 2006.

[45] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil. An examination
of software engineering work practices. In CASCON ’97: Proceedings of
the 1997 conference of the Centre for Advanced Studies on Collaborative
research, page 21. IBM Press, 1997.

[46] S. Thummalapenta and T. Xie. Parseweb: a programmer assistant for
reusing open source code on the web. In ASE ’07: Proceedings of the
twenty-second IEEE/ACM international conference on Automated soft-
ware engineering, pages 204–213, New York, NY, USA, 2007. ACM.

[47] F. Tip. A survey of program slicing techniques. Technical report, Ams-
terdam, The Netherlands, The Netherlands, 1994.

[48] F. Tip, C. Laffra, P. F. Sweeney, and D. Streeter. Practical experience
with an application extractor for java. In OOPSLA ’99: Proceedings of
the 14th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 292–305, New York, NY,
USA, 1999. ACM.



[49] M. Weiser. Program slicing. In ICSE ’81: Proc. of the 5th Int’l confer-
ence on Softw. Eng., pages 439–449, Piscataway, NJ, USA, 1981. IEEE
Press.

[50] A. M. Zaremski and J. M. Wing. Signature matching: a key to reuse.
SIGSOFT Softw. Eng. Notes, 18(5):182–190, 1993.


