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Abstract—Software Testing (ST) is one of the least known
aspects of software development. Yet, software engineers often
argue that it demands more than half of the costs of a soft-
ware project. Thus, proper testing education is of paramount
importance. In fact, the mere exposition to ST knowledge might
have an impact on programming skills. In particular, it can
encourage the production of more reliable code. Although this
is intuitive, to the best of our knowledge, there are no empirical
studies about such effects. Evidence on this matter is important to
motivate – or demotivate – classical testing education. Concerned
with this, we have conducted a study to investigate the possible
impact of ST knowledge on the production of reliable code. Our
controlled experiment involved 28 senior-level Computer Science
students, 8 auxiliary functions with 92 test cases, and a total of
112 implementations. Results show that code delivered after the
exposition to ST knowledge is, on average, 20% more reliable
(a significant difference at the 0.01 level). Also, implementations
delivered afterwards are not significantly larger in terms of lines
of code. This indicates that ST knowledge can make developers
produce more reliable software with no additional overhead in
terms of program size.

Index Terms—software testing, computer science education,
student experiments.

I. INTRODUCTION

Software Testing (ST) is one of the most important and least
known aspects of software development. In fact, it is common
that Computer Science (CS) students graduate into industry
without knowing how to test a program [1]. ST is thus regarded
as one of the dark arts of software development [2]. Yet,
researchers and practitioners argue that testing often demands
more than 50% of the costs of a software project [3].

There is another aspect of ST that seems to be overlooked:
the mere exposition to its knowledge might help developers
produce more reliable programs. In fact, there are several
ideas in the ST body of knowledge that can produce positive
effects in programmers’ skills. For instance, consider the
awareness that virtually all programs contain faults [2, 5],
a principle taught early in ST courses. Such an idea can
instil a healthy skepticism in programmers towards their own
code, making them more cautious. Moreover, the formal
testing techniques themselves encourage designing programs
with attention. Take, for example, boundary value analysis, a
functional testing criterion that requires writing tests for border

inputs. Developers exposed to this strategy can be more careful
about corner cases in their implementations, hence improving
the quality of their code.

Although the effect of testing knowledge on programmers
seems to be intuitive, there is little empirical evidence to
support it. We can find in the literature substantial work into
developing ways to improve the training of ST in CS programs.
For instance, Patterson et al. proposed the integration of testing
tools into programming environments [6], Jones has explored
the integration of testing into introductory CS courses through
testing labs and diverse forms of courseware [7], and Elbaum
et al. presented a web-based tutorial to engage students in
learning software testing strategies [4]. However, to the best
of our knowledge, there are no experimental studies into the
effects of ST education on the developers’ programming skills
per se, in terms of reliability.

Investigations into this topic are important because recent
data shows that computing academic curricula tend to empha-
size development at the expense of testing as a formal engi-
neering discipline [1, 8, 9]. In fact, as reported by Astigarra et
al. [8], the bulk of academic CS curricula tend to place a heavy
emphasis on design and implementation, rather than on quality
assurance topics such as ST. On the other hand, even when ST
courses are in fact present in curricula, it is unclear the extent
to which the techniques that are taught are in fact adopted by
the industry (e.g., mutation [10] and data-flow [3] testing seem
to be rarely practiced). Empirical evidence showing that ST
education can lead to more reliable programming can motivate
the creation or maintenance of these courses.

In this paper, we present a study that investigates the impact
of ST education on reliable programming. We have conducted
a controlled experiment involving 28 senior CS undergraduate
students, 8 auxiliary functions in 4 different domains (basic
mathematics; array manipulation; string manipulation; and file
input/output) with 92 test cases, and a total of 112 implemen-
tations. Subjects implemented two different functions before
and after learning basic ST concepts and three techniques
(functional – or black-box – testing, structural – or white-box –
testing, and mutation testing), and the quality of the produced
code before and after was compared. Our goal was not to ver-



ify how well the techniques were applied afterwards, but how
ST knowledge could impact on the subjects’ programming
skills in terms of producing more reliable implementations
(i.e., we did not measure the quality of the testing code itself,
neither which specific techniques were being applied). To
evaluate the reliability of the implemented functions in terms
of correctness, the produced implementations were executed
against the systematically developed test sets before and after
the training took place. To improve the external validity of our
experiment, we included a control group of 8 subjects at the
same academic year who were not taking the ST course.

Our study provides evidence that ST knowledge can signif-
icantly impact on programming skills in terms of reliability.
In fact, subjects were more than twice more likely to deliver
correct implementations after learning the ST concepts and
techniques (150%). Moreover, the correctness of the subjects’
implementations was, on average, 20% higher after the expo-
sition to ST knowledge took place. Interestingly, we noticed
that the positive effect is present even when no specific testing
technique is explicitly applied, possibly a consequence of the
exposure to the testing theory itself. Subjects in the control
group did not perform as well as the ones in the treatment
group.

As an additional investigation, we looked into the subjects’
efforts – in terms of time and lines of code written – and
complexity of the produced code – in terms of cyclomatic
complexity. Our study indicates that subjects do invest more
effort in their implementations after taking the ST lessons,
in terms of time. However, such effort did not result in
the production of significantly more lines of application
code, implying that the implementations produced afterwards
were more reliable but not significantly larger than the ones
produced in the first session. Cyclomatic complexity was
significantly higher in the second session, probably because
the second session implementations covered important corner
cases through conditionals that were omitted in the first
session.

The remainder of this paper is structured as follows. Sec-
tion II presents background knowledge required to understand
our study, and Section III presents how our study was set up in
terms of subjects, experimental design, metric and statistical
procedures. Section IV presents the results and analysis of our
experiment, while Section V discusses such results in more
details. In the sequence, Section VI presents our study limi-
tations and Section VII summarizes related research. Finally,
Section VIII concludes the paper.

II. SOFTWARE TESTING KNOWLEDGE

In this paper, the functional, structural, and fault-based test-
ing techniques together with basic software testing principles
and concepts – such as the ones discussed in this section and
in Section I – were taken as basic software testing knowledge
(ST knowledge, from now on). Our goal is to evaluate whether
such knowledge could impact on the programming skills
of software developers, in terms of producing more reliable
implementations.

A test case (or simply, a test) consists of a set of inputs and
expected output for a program [11]. The output is assessed
via an oracle, which determines what is the correct result of
the program under testing given an input [12]. In our case,
the oracle is a tester supported by an automated testing tool
(in this paper, JUnit1) that implements assertions. Formally, a
test case is an ordered tuple: < (I1, ..., In), O >, where O is
the expected output of the program when I1, ..., In are used
as inputs.

Software testing is defined as the execution of a program
against test cases with the intent of revealing faults [2]. The
varied testing techniques are defined based on the underlying
artifacts used to derive test cases. Three basic testing tech-
niques are functional, structural, and fault-based testing.

Functional – or black box – testing derives test cases from
the specification of a program. Two of the most well-known
functional-based testing selection criteria are equivalence par-
titioning and boundary-value analysis. Equivalence partition-
ing divides the input and output domains of a program into
a finite number of valid and invalid equivalence classes. It
is then assumed that a test case with a representative value
within a given class is equivalent to testing any other value in
the same class. This criterion requires a minimum number
of test cases to cover the valid classes and an individual
test case to cover each invalid class. Boundary-value analysis
complements equivalence partitioning by requiring test cases
to cover values at the boundaries of equivalence classes [2].

Structural – or white-box – testing is a technique that
complements functional testing. It derives test cases from
the internal representation of a program [2]. Some of the
well-known structural testing criteria are statement, branch,
or definition-use [13] coverage. These criteria require that all
commands, decisions, or pairs of assignment and use locations
of a variable be covered by test cases.

Fault-based testing has mutation testing as its most repre-
sentative criterion. The main idea behind mutation testing is
to define a set of mutation operators which, when applied to
components of a program, introduce certain types of faults
into the program. Typical mutations include changing variable
names in expressions, or changing arithmetic operators (e.g.,
a > for a <). The goal then is to construct a set of tests
cases T which will distinguish between a program P and
any nonequivalent program P ′ which can be generated from
the original P by the application of mutations to components
of P [14].

III. STUDY SETUP

The goal of our study is to investigate the impact of ST
knowledge on programming skills. Such impact is evaluated
in terms of reliability. In this endeavor, we are interested in
the following research question: RQ1 – Can ST knowledge
help developers improve their programming skills in terms of
delivering more reliable implementations?
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As an additional investigation, we want to check whether
developers tend to invest more (or less) effort in their imple-
mentations after learning ST, and whether there is a difference
in the complexity of the code produced before and after the
exposition to ST knowledge. Such additional investigation
raises two other research questions: RQ2 – Does ST knowl-
edge impact on the effort invested by developers on their
implementations?; and RQ3 – Does ST knowledge impact on
the complexity of the produced code?

Our investigation develops in terms of hypotheses H1, H2,
H3, and H4, where the first is related to research question
RQ1, the second and the third are related to research question
RQ2, and the forth is related to research question RQ3. The
null (0) and alternative (A) definitions of each hypothesis are
described in Table I.

TABLE I
HYPOTHESES FORMULATED FOR OUR EXPERIMENT.

Null hypothesis (0) Alternative Hypothesis (A)
H1 CorrectnesswoTK = CorrectnesswTK CorrectnesswoTK < CorrectnesswTK
H2 TimewoTK = TimewTK TimewoTK < TimewTK
H3 SizewoTK = SizewTK SizewoTK < SizewTK
H4 ComplexitywoTK = ComplexitywTK ComplexitywoTK < ComplexitywTK

Legend: H = Hypothesis; woTK = without testing knowledge; wTK = with testing
knowledge; Size = code size; Complexity = code complexity.

The experimental setup adopted for our study shares several
characteristics of a previous study conducted by the same
authors [15]. The main difference is that in this paper we
evaluate the impact of the testing knowledge on programming
skills, while the previous experiment targeted agile practices.
Moreover, in the experiment presented in this paper two
functions and a control group were added to the experimental
design. This was done to add more rigor to the study, since
subjects implemented two functions in each session and we
compared outcomes with a group of students that was not
taking the ST course. The next paragraphs discuss our setup
in detail.

A. Subjects, Target Functions, Test Sets, and Tools

Subjects: Our study involved 28 senior CS undergraduate
students (20 in the treatment group and 8 in the control group).
All students had basic Java programming knowledge learned
along a one-semester, 72-hour Object-Oriented Programming
course (8 hours per week). The students in the treatment group
were asked to perform the tasks of our experiment before and
after learning ST knowledge while taking a 72-hour Software
Testing course. The first session took place on the first week
of the semester, and the second took place around two and
a half months later. The control group did exactly the same
thing, except that they were not taking the ST course, but an
Object-Oriented (OO) Design in Java course (mostly learning
UML and OO patterns and their implementations in Java).

All sessions were performed in a closed-lab environment.
Students had two hours to complete their tasks, and were
asked to use a Java IDE to implement and test their assigned
functions. Since we were more interested in the effects of the

testing theory itself on programming skills, not as much on
the application of the specific testing techniques themselves,
no functional, structural, or mutation testing tools were readily
available to them. In this way, our results represent more the
impact that learning the testing concepts and techniques have
on programming skills. In fact, as we discuss in Section V, by
analyzing the code produced by the subjects of the treatment
group, it appears that some of them have not explicitly applied
the learned techniques, and still got better results.

Target Functions. The features involved in our study were
auxiliary functions, that is, supportive actions of software
systems. It is important that these functions be developed with
care because the history of software development shows that
they can be the source of significant failures [15]. To select
a representative and variable set of such features, we looked
into the Apache Commons project2, which provides libraries
of reusable Java components. We also selected functionalities
that could easily be found through searches issued to code
search engines; that is, we tried to identify commonly used
auxiliary functions that were not readily available in the
Java API. We categorized these functions into four domains:
array manipulation (Array), basic mathematics (Math), string
manipulation (String), and file input/output (File I/O). To
obtain a richer set, we selected two functionalities within each
domain. The auxiliary functions used in our study are listed
in Table II.

Another characteristic of the selected functions is that they
are narrowly scoped. The idea is to perform a conservative
evaluation: if particular knowledge can impact on the imple-
mentation of smaller features, we can expect them to further
impact on larger ones. Another advantage is that this type of
function enables the adoption of more systematic test case
selection techniques to evaluate them in the experiment, such
as functional testing. Such characteristic provides more control
to the experiment.

Test Sets. To evaluate the programs implemented by the
subjects, we developed full functional test sets for each of
the selected functions. The last column of Table II shows the
number of test cases developed for each one. To construct
the test sets, we applied the equivalence partitioning and
boundary-value analysis criteria (see Section II). These criteria
were used to select representative test cases for each test
set, trying to cover as many functional specificities of the
functions as possible. To show an example of how test cases
were developed, Table III presents the equivalence classes and
boundary values (when applicable) for the a1 functionality. ar1
and ar2 are the a1 input arrays; |ar| represents the array size;
and arX[i] represents an element of the array. Int.MIN and
Int.MAX correspond to the minimum and maximum integer
values. Since the study was conducted using the Java language,
the highest and lowest possible integers were used as boundary
values for that data type. A similar rule was applied to other
types for other functions. Here, we do not use the specific
values to represent the test cases independently of language.

2http://commons.apache.org/ - 07/jun/2015
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TABLE II
FUNCTIONS USED IN THE EXPERIMENT.

Domain F Description Sample Test Case # TCs

A
rr

ay
a1

Array equality: given two arrays, the program should return true
<([1, 2, 3], [1, 2, 3]), true> 20

or false according to the contents of the arrays being equal or not.

a2
First index with different value: given an array and a number,

<([0, 0, 0, 0, 0, 1], 0), 5> 12the program should return the first index of the array that
contains a value different from the number.

M
at

h m1
Power of two: given a number, the program should return true

<(4), true> 6
or false according to it being or not a power of two.

m2 Factorial: given a number, the program should return its factorial. <(5), 120> 7

St
ri

ng

s1
Capitalization of phrases: given a string, the program should

<(“one two”), “One Two”> 7
return the same string with the first letters of words capitalized.

s2
Maximum common prefix: given two strings, the program should

<(“pref suf”, “pref fus”), “pref ”> 11
return the maximum common prefix between them.

Fi
le

I/
O i1

Create text file: given two strings, the program should create a text file <(“abc”, “.\dir\text.txt”),
13whose content and location/name is indicated in the first creates file .\dir\text.txt with

and second string. “abc” as content>

i2
File copy: given two strings, the program should copy the file <(“.\test.file”, “.\tmp\”), .\test.file

16
indicated in the first string to the location indicated in the second. is copied to .\tmp\ >

Legend: F = Function; TCs = Test Cases.

TABLE III
EQUIVALENCE CLASSES AND BOUNDARY VALUES CONSIDERED FOR TESTING Array Equality (A1).

Input Cond. Valid Classes Invalid Classes Boundary Values
|ar1| |ar1| > -1 (C1) |ar1| = 0 (B1)

ar1 is null No (C2) Yes (C3)
|ar2| |ar2| > -1 (C4) |ar2| = 0 (B2)

ar2 is null No (C5) Yes (C6)

|ar1|, |ar2| |ar1| > |ar2| (C7) |a1| - |a2| = 1 (B3)
|ar2| > |ar1| (C8) |a2| - |a1| = 1 (B4)

ar1[i] Int.MIN ≤ ar1[i] ≤ Int.MAX (C9)
ar1[i] = Int.MIN (B5)
ar1[i] = Int.MAX (B6)

ar2[i] Int.MIN ≤ ar2[i] ≤ Int.MAX (C10)
ar2[i] = Int.MIN (B7)
ar2[i] = Int.MAX (B8)

Tools. Eclipse3 was the IDE used to develop the func-
tions, and JUnit was the framework used to develop the test
cases. Students received instructions in order to make sure
they would concentrate their effort only on implementing the
intended auxiliary functionalities (and tests for them). For
instance, the subjects were instructed to implement functions
as static methods in a class with a predefined name. We did
this because static methods are easier to implement since
they do not require object instantiation. Moreover, auxiliary
functions usually rely only on parameter values to fulfill
their responsibility. This also enables the execution of our
established test sets more easily.

B. Experimental Design and Procedure

For the conducted experiment, we adopted the repeated
measures with cross-over and control group experimental
design (or pre-post test with control group), in which each
subject implemented functions before and after acquiring the

3http://eclipse.org/ - 07/jun/2015

ST basic knowledge – in the case of the treatment group –
or OO design basic knowledge – in the case of the control
group. Such type of design supports more control to the vari-
ability among subjects [16]. To minimize the variability of the
difference among functions, we randomized the assignments
among students for both groups. Finally, to cancel function
asymmetry, each function was assigned to be implemented
before and after the treatment by different subjects.

The experiment was conducted in two sessions. In the first
session, prior to learning any ST or OO design concepts,
students implemented two functions; and in the second session,
after learning ST or OO design, they implemented other two
functions. Since each subject implemented 4 functions, we
collected a total of 112 implementations.

Students had to implement functions from different domains
in the first and second sessions. For instance, a student
implementing a1 and i2 in the first session would implement
a Math and a String function in the second session. We did
this to cancel the impact of function domains on each other

http://eclipse.org/


while implementing the functionalities in the first and second
sessions.

To help understanding the adopted experimental design, Ta-
ble IV presents part of the assignments used for the experiment
for one of the groups.

TABLE IV
PARTIAL TASK ASSIGNMENTS TO SUBJECTS.

Subject 1st Session 2nd Session
Functions Functions

01 a1 & m1 s1 & i1
02 a1 & s1 m1 & i1
03 a1 & i1 s1 & m1

04 s1 & m1 a1 & i1
05 s1 & i1 a1 & m1

06 m1 & i1 a1 & s1
07 a2 & m2 s2 & i2
08 a2 & s2 m2 & i2
09 a2 & i2 s2 & m2

10 s2 & m2 a2 & i2

... ... ...

C. Metrics

We adopted a straightforward metric to evaluate the relia-
bility of the developed functions: their correctness in terms of
their Functional Test Set Success Rate (FTSSR). For a given
implementation, FTSSR is computed by dividing the number
of successful test cases by the total number of test cases
developed for a given function. The FTSSR is a continuous
variable: it grades implementations from 0.0 to 1.0. For
instance, an implementation of the a1 function that passed 10
test cases would receive an FTSSR score of 0.5, since there
are 20 test cases developed for it in its test set (see Table II).

For the effort evaluation, we measured the total development
time in minutes subjects took to implement the two func-
tions in each session, and the average number of produced
lines of code (LoC). Some studies have found a positive
correlation between the size of program modules in LoC and
fault-proneness [17, 18] (i.e., the larger a module in LoC,
the more faults it tends to present). Therefore, by measuring
the difference in LoC from the first to the second session we
are also secondarily evaluating an additional reliability metric.
That is, if code produced in the second session is not larger
than code produced in the first session, we have an additional
evidence that reliability has not decreased afterwards from
such a perspective.

To evaluate complexity, we computed the average McCabe
cyclomatic complexity metric [19] (M). We used the Eclipse
Metrics to measure both LoC and M4. Subjects were respon-
sible for registering the time taken to implement functions.

D. Statistical Analysis

From a statistical standpoint, a simple observation of the
means or medians from sample observations is not enough to
infer about the actual populations. This happens because the
reached differences might be a coincidence caused by random

4http://metrics.sourceforge.net - 07/jun/2015

sampling. To check whether the observed differences are in
fact significant, statistical hypothesis tests can be applied.

In our study, each subject developed functions before and
after learning the ST and OO design concepts. In this case,
the paired statistical hypothesis tests can compare measures
within subjects rather than across them. Paired tests are
considered to greatly improve precision when compared to
unpaired tests [16]. Since our results seemed to follow a
normal distribution, according to a Shapiro-Wilk normality
test, we decided to apply the paired Student t-test.

To have a more rigorous evaluation of our results, for the
statistical tests ran in our experiment, we adopted a confidence
level of 99%. Our analyses thus consider p-values below 0.01
significant. For the statistical tests we adopted the R language
and environment5.

IV. RESULTS AND ANALYSIS

Table V presents the results of our experiment for the
treatment group. For FTSSR, the table shows the results for
each function implemented and the average. For other metrics,
it shows only the average (Cyclomatic Complexity - M - and
Lines of Code - L) and total (Development Time - T ). To
allow a visual analysis of two metrics that were significantly
affected for the treatment group, Figure 1 shows a boxplot of
the FTSSR and M outcomes for that group. Note that some
subjects were removed from our analysis either for producing
outliers in terms of FTSSR, or for not completing all assigned
tasks (for instance, some students did not implement one of
the two functions required for each session). The outliers are
discussed in Section VI.

We can notice that results related to reliability improved
significantly and consistently after the ST course took place:
the average FTSSR went from 0.70 to 0.84, a 20% improve-
ment. Also, the number of implementations that passed all
tests more than doubled in the second session: they went
from 4 to 10. Moreover, the single subject that produced two
implementations that passed all tests only did so in the second
session (subject #13). Note that 13 out of the 20 subjects
(65%) achieved better reliability results after taking the ST
course. The boxplot also shows that the subjects’ performance
was more varied in the first session, while in the second
session they were consistently better. The second session box
is smaller and higher than the first session one.

Other interesting outcomes are worth noting. For instance,
the minimum FTSSR was improved by approximately 65%
from the first to the second session (it went from 0.43 to
0.71). This indicates that even less proficient programmers
can benefit from the ST knowledge, with respect to producing
more reliable software. Also note that the subject that reached
such a minimum in the first session, raised her FTSSR score
to 0.91, on average, in the second session: a very significant
improvement (one of the functions developed by the student
in that session passed all tests). Another interesting outcome
is that there is only a single function that did not pass any
of the tests, and it was produced in the first session only.

5http://www.r-project.org/ - 07/jun/2015
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TABLE V
OUTCOMES FOR THE TREATMENT GROUP. S = SUBJECT; FTSSR =
FUNCTIONAL TEST SET SUCCESS RATE; Fn = FUNCTION N; µ =

AVERAGE; Σ = TOTAL; T = DEVELOPMENT TIME (IN MINUTES); L =
LINES OF CODE; M = CYCLOMATIC COMPLEXITY.

S
1st Session 2nd Session

FTSSR
ΣT µL µM

FTSSR
ΣT µL µM

F1 F2 µ F1 F2 µ

1 0.95 0.00 0.48 40 11.00 2.00 0.83 1.00 0.92 61 19.50 3.50
2 0.55 0.71 0.63 28 16.50 1.50 0.56 1.00 0.78 80 16.00 5.00
3 0.85 0.42 0.63 16 14.50 2.50 0.83 0.86 0.85 80 18.00 4.00
4 0.83 0.86 0.85 28 16.00 4.50 0.85 0.92 0.88 7 15.50 5.00
5 0.85 0.83 0.84 34 14.50 3.00 0.71 0.82 0.77 82 16.50 7.00
6 0.85 1.00 0.93 45 17.00 5.00 0.83 0.71 0.77 40 17.50 4.50
7 0.83 0.64 0.73 30 16.00 2.00 0.92 1.00 0.96 51 10.00 3.50
8 0.58 0.43 0.51 32 10.00 2.50 0.83 0.71 0.77 70 16.00 3.00
9 0.92 0.83 0.88 35 16.00 3.00 1.00 0.86 0.93 110 21.50 5.50

10 0.55 0.67 0.61 90 19.50 4.50 0.92 0.71 0.82 120 18.00 4.50
11 1.00 0.82 0.91 75 23.00 6.50 0.83 0.83 0.83 70 21.50 4.50
12 0.43 0.71 0.57 40 9.50 1.50 0.85 0.81 0.83 60 13.50 3.00
13 0.92 0.06 0.49 30 18.50 3.50 1.00 1.00 1.00 56 18.50 5.00
14 0.75 0.06 0.41 45 14.50 2.00 1.00 0.82 0.91 45 16.50 5.00
15 0.63 0.71 0.67 35 28.50 5.00 0.95 1.00 0.98 25 24.00 6.00
16 0.50 0.43 0.46 30 14.00 3.00 0.67 1.00 0.83 37 20.00 6.50
17 0.85 0.57 0.71 22 9.50 4.50 0.56 0.86 0.71 60 22.00 4.00
18 0.83 0.92 0.88 50 14.00 2.50 1.00 0.64 0.82 63 20.50 6.00
19 1.00 0.82 0.91 33 15.50 5.00 0.42 0.92 0.67 22 15.50 3.00
20 1.00 0.86 0.93 31 17.00 4.00 0.85 0.83 0.84 18 15.00 3.00

µ 0.78 0.62 0.70 38.45 15.75 3.40 0.82 0.87 0.84 57.85 17.78 4.58
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Fig. 1. Boxplot of the Functional Test Set Success Rate (FTSSR) and
Cyclomatic Complexity (M) outcomes of our experiment, for the treatment
group. Legend: woTK = without Testing Knowledge; wTK = with Testing
Knowledge.

The same subject that developed such a function – subject #1

– developed another one that passed all tests in the second
session.

To check whether the observed difference in terms of
correctness was significant – the difference in average FTSSR
–, we ran the t-test, which indicated a statistically signifi-
cant difference at 99% confidence level (df = 19, p-value
= 0.005168). Such result favors the alternative hypothesis
(H1-A) that subjects perform better after learning the ST
concepts and techniques. We believe this is a key finding,
since even for supportive functionality it appears that learning
ST can bring benefits to developers. Moreover, the larger
number of completely correct implementations for subjects in
the second session shows that they tend to be more careful
while implementing auxiliary functions after being exposed
to ST knowledge, probably taking into account exceptional
inputs that were included in the test sets.

Because we are considering reliability as the system’s
quality driver, a failing test case in our scenario is critical.
This is particularly true for our experimental setting: since we
applied functional testing, each test covers an important part
of the functionality (i.e., either an input or output equivalence
class, or a boundary value), therefore a failing test case impacts
significantly on the correctness of the system. In this sense, our
results indicate that the exposition to ST knowledge could even
help prevent serious problems caused by auxiliary functions,
like the ones reported by major companies, as discussed in
Section III and by Lemos et al. [15].

Effort and Complexity Investigation

In our additional investigation into the impact of learn-
ing ST theory on effort and complexity, we also reached
interesting results. With respect to duration, subjects invested
considerably more time in the second session: 19.4 minutes
more, on average (more than 50%). To check whether the
observed difference in terms of time was significant, we ran
the t-test, which indicated a statistically significant difference
at 99% confidence level (df = 19, p-value = 0.002406). Such
result favors the alternative hypothesis (H2-A) that subjects
invest more time implementing functions after learning the
ST concepts and techniques. This is an indication that they
tend to be more cautious after the exposition to ST theory,
either by investing more time in the application code itself, or
in the tests.

On the other hand, when we look into the produced lines
of application code, we did not find a significant difference:
subjects produced, on average, 2.03 more LoC in the second
session (15%). This is quite surprising as the implementations
produced after learning the ST theory were more reliable
than the ones produced before, but not significantly larger in
terms of LoC. This indicates that ST theory might improve
programming skills not only in terms of producing more
correct code, but also in terms of producing leaner code. To
confirm our intuition, we ran the t-test, which in fact did not
indicate a statistically significant difference at 99% confidence
level (df = 19, p-value = 0.03048). Such result favors the



null hypothesis (H2-0) that subjects produce similar number
of lines of code after learning ST.

As commented in Section III, some studies have found a
positive correlation between the size of program modules in
LoC and fault-proneness. Since implementations produced in
the second session were not significantly larger in LoC, we
believe this is an additional evidence that reliability did not
decrease from the first to the second session.

With respect to complexity, code produced in the second
session was sensibly more complex than code produced before,
in terms of the McCabe’s complexity metric: 1.18 points
higher, on average (34.70%). Such difference indicates that
the functions implemented after learning ST contained more
conditional statements. This is expected, as those functions
were more successful against the established test suites, which
covered exceptional inputs. The t-test indicated a statistically
significant difference at 99% confidence level (df = 19, p-value
= 0.004649). Such result favors the alternative hypothesis
(H3-A) that subjects tend to produce more complex imple-
mentations after learning the ST concepts and techniques.

Analysis of the Control Group

Table VI presents the results for our control group. We
included this group in our study mainly to reduce threats to
the internal validity of our experiment, in particular related to
history (e.g., students in the treatment group could have been
exposed to other types of knowledge that might also have had
an impact on reliable programming).

TABLE VI
OUTCOMES FOR THE CONTROL GROUP. S = SUBJECT; FTSSR =
FUNCTIONAL TEST SET SUCCESS RATE; Fn = FUNCTION N; µ =

AVERAGE; Σ = TOTAL; T = DEVELOPMENT TIME (IN MINUTES); L =
LINES OF CODE; M = CYCLOMATIC COMPLEXITY.

S
1st Session 2nd Session

FTSSR
ΣT µL µM FTSSR

ΣT µL µM
F1 F2 µ F1 F2 µ

1 1.00 0.75 0.88 67.00 13.50 2.50 0.60 1.00 0.80 23.00 19.50 6.00
2 0.58 0.29 0.43 35.00 12.00 3.00 0.00 0.75 0.38 11.00 17.00 3.00
3 0.71 0.75 0.73 27.00 19.50 3.50 0.82 0.56 0.69 39.00 24.00 5.00
4 0.95 0.06 0.51 49.00 12.50 1.00 0.92 0.75 0.83 30.00 14.00 2.50
5 0.92 0.43 0.67 41.00 18.00 5.00 1.00 0.85 0.93 11.00 10.50 3.50
6 0.43 0.58 0.51 18.00 17.50 5.00 0.56 0.83 0.70 53.00 15.50 3.00
7 0.50 0.29 0.39 45.00 16.00 3.00 0.67 0.29 0.48 28.00 13.50 2.00
8 0.92 0.29 0.60 8.00 11.00 3.00 1.00 0.57 0.79 28.00 17.00 5.50

µ 0.75 0.43 0.59 36.25 15.00 3.25 0.70 0.70 0.70 27.88 16.38 3.81

Although the sample size was much smaller for the control
group – only 8 subjects –, some interesting outcomes are worth
noting. In particular, results reached for this group reinforce
the evidence that the ST theory can have more impact on
reliable programming than other types of knowledge. Note
that although FTSSR also improved in the second session for
this group, the difference was not as significant and consistent
as for the treatment group. In fact, the t-test shows that the
difference was not statistically significant at 99% confidence
value (df = 7, p-value = 0.04415). It is worthwhile noting that

this group was taking a Java OO design course, so it was
expected that their programming skills would be improved.
On the other hand, it is quite surprising that the ST course,
which does not focus directly on programming, had a more
significant impact on reliable programming.

Other outcomes are worth noting. For instance, similarly to
the treatment group, there was a single implementation that
did not pass any of the tests. However, for the control group,
such implementation was produced in the second session
(recall that for the treatment group no subject implemented a
function that did not pass any tests in the second session). Also
note that, differently from the treatment group, cyclomatic
complexity was not significantly higher in the second session
(df = 7, p-value = 0.2251). This is an evidence that the
students taking the ST course were probably more cautious
about exceptional inputs, which made them add conditionals to
their implementations, whereas the same did not happen here.
On the other hand, for the control group the total development
time reduced from the first to the second session (although,
according to the t-test, such difference was not statistically
significant – df = 7, p-value = 0.2083). This is an interesting
deviation from the treatment group, which took significantly
more time to develop functions after learning ST (probably
because they were more cautious and developed tests for
their implementations). With respect to LoC, similarly to the
treatment group, there was no significant difference from the
first to the second session.

In summary, with respect to reliability, it can be noticed
that the ST knowledge seems to have had more significant
impact on the students than the OO design knowledge. Also,
it seems that the subjects that were exposed to ST theory
became more cautious afterwards, by taking more time to
implement functions and tests, and by adding conditionals to
cover borderline cases.

V. DISCUSSION

An interesting insight provided by our experiment is that
subjects in the treatment group seemed to have performed
better even when no specific testing technique was explicitly
applied. As discussed in Section III, no testing tools were
readily available to the students when they performed the
experimental tasks. This was done because we were more
interested in the impact that the testing knowledge itself had
on programming skills, not as much in the impact of the
application of formal testing techniques.

Although students were also trained to write JUnit test
cases, some wrote their tests on main programs. For instance,
Figure 2 shows a code snippet of tests implemented by one
of the subjects on the second session in a main method. This
student was one of the ones that obtained good results after
learning ST theory. Note that nothing implies that a specific
testing technique was being explicitly applied. Although it
appears that a strategy similar to the one established by func-
tional testing was followed (i.e., some even and odd numbers
were tried, the number one was tried), it does not seem that a
formal partitioning of the input domain was performed, neither



that all boundary values were considered. However, the student
did perform better in the second session, indicating that the
ST theory improved her/his programming skills. In fact, in one
of the first session implementations by the same subject, none
of the tests passed, indicating that significantly better coding
was happening in the second session.

public static void main(String[] args) {
//m1 - power of two
boolean r;
r=Util.isPowerOfTwo(5);
System.out.print(r);
System.out.println("");
r=Util.isPowerOfTwo(1);
System.out.print(r);
System.out.println("");
r=Util.isPowerOfTwo(4);
System.out.print(r);
System.out.println("");
r=Util.isPowerOfTwo(8);
System.out.print(r);
System.out.println("");
r=Util.isPowerOfTwo(16);
System.out.print(r);
...

}

Fig. 2. A code snippet from tests developed by one of the subjects in the
second session of our experiment.

On the other hand, it must be noted that some of the students
did write tests following a specific technique. For instance,
Figure 3 shows a partial JUnit class with tests developed by
another subject that also had better outcomes on the second
session. Note that, in this case, it appears that functional testing
was being followed more thoroughly: there are additional tests
for zero, a negative number, and a large number.

public class UtilTest extends TestCase {
...
public void testIsPowerOfTwo(){
assertTrue(Util.isPowerOfTwo(4));

}
public void testIsPowerOfTwoWrong(){
assertFalse(Util.isPowerOfTwo(9));

}
public void testIsPowerOfTwoZero(){
assertFalse(Util.isPowerOfTwo(0));

}
public void testIsPowerOfTwoNegative(){
assertFalse(Util.isPowerOfTwo(-2));

}
public void testIsPowerOfTwoLarge(){
assertTrue(Util.isPowerOfTwo(4096));

}
...

}

Fig. 3. Code snippet from tests developed by another subject in the second
session of our experiment.

In their classic The Art of Software Testing [2], Myers
et al. argue that “the software tester needs the proper attitude
[..] to successfully test a software application”. They go on
to say that such psychology of testing establishes the most
important considerations in ST. Our results indicate that the
exposition to the principles behind such testing attitude, along
with the techniques that derive from it, might produce positive
effects on programmers themselves, with respect to reliable
programming.

Agile development proponents seem to have identified the
effect of such testing attitude, by encouraging testing activ-
ities along the development process (e.g., the test infected
condition [20]). In fact, in a recent survey with 326 agile
developers, two of the top 5 most important agile principles
identified by developers involved testing (i.e., “Automated tests
run with each build”, and “Automated unit testing”) [21].
Although ST activities in the agile community are more on the
lines of practical testing as opposed to more formal testing,
both agile philosophy and classical testing education do share
important principles with regards to ST. For instance, both
traditional testing literature [22] and test-driven development
proponents [23] put forward the idea that successful test cases
are the ones that find faults, and not the ones that simply
“pass”.

VI. THREATS TO VALIDITY

It is common knowledge that all empirical studies have
limitations [24]. On the other hand, we believe our study
had several characteristics that made it more rigorous and
thus with improved validity. In particular, the fact that it
was conducted in an academic setting made us have more
control over confounding effects. In any case, there are still
limitations that are worth mentioning. In this section we
discuss such limitations based on three types of threats to
validity described by Wohlin et al. [25]. For each type, we
list possible threats, measures taken to reduce each risk, and
suggestions for improvements in future studies.

A. Internal Validity
The lack of control of the subjects’ skills on programming

and testing (other than all being in the same year of the
program) might have affected the internal validity of our
experiment. However, the repeated measures design decreases
the probability of this threat affecting our outcomes, because
the same subjects implemented functions before and after
learning ST and OO Design.

Another aspect to be considered is mortality. Since we
had more students invited to participate in the experiment
in the beginning (some of them did not complete the two
sessions and were therefore excluded from the study), the
actual tasks that took place did not follow the exact initial
assignments. This could affect the balance of the assignments
that was taken into consideration in the experiment design.
However, we believe that since our sample was not too small
for the treatment group, an adequate balance could still be
maintained. Moreover, the initial assignment set contained
some redundancies which helped circumvent such threat.



Another threat to the internal validity of our experiment
was the removal of some subjects that produced outliers with
respect to the FTSSR metric in the treatment group6. In
fact, when the same statistical test is run in the presence
of the outliers, it indicates a non-significant difference at
99% confidence level. In order to justify the removal of
such outliers, we investigated what could have affected these
particular students in making them produce such extraneous
results. In three cases, the FTSSR score was far below the
average in the second session (0.21, 0.29, and 0.30), and in
the remaining case, far below the average in the first session
(0.31). The three subjects of the first group – results which
could affect our conclusions – had strong reasons not to benefit
well from the ST course: one of them was a foreigner with
difficulty in understanding the language in which the course
was taught; the second had a poor record of scores in many
other courses taken; and the third was a part-time student.

B. External Validity
The use of students as subjects for our experiment might

have reduced its external validity. In fact, some experiments
have shown opposite trends for students and professionals
(e.g., Arisholm and Sjoberg [26]). However, according to other
authors, students can play an important role in experimentation
in the field of Software Engineering [27, 28]. For instance,
Canfora et al. [29] have conducted a pair programming ex-
periment in academia and replicated the same experiment in
industry. According to the authors, the experiments produced
similar results for both samples.

Another more recent study that involved Test-Driven De-
velopment (TDD) has also shown similar outcomes for both
students and professionals. The same study points with more
in-depth analysis that students can in fact sometimes be
representatives of professionals in Software Engineering ex-
periments, in particular when trying new approaches [30].
Since in our case, students were being exposed to testing
knowledge for the first time, it is likely that professionals
with little testing background would perform similarly. Carver
et al. [31] also analyze characteristics in which empirical
studies with students can make them more valid. According
to the authors, when studying issues related to a technology’s
learning curve or the behavior of novices, students are exactly
the right test population. In our case, since we wanted to
evaluate how learning ST could impact on the behavior of
programmers, we believe our experiment falls into such a
category of study.

The students involved in our experiment – except for the
single one mentioned before – were all Brazilians. It might be
the case that students from other nationalities might perform
differently. Moreover the experiment only involved students
from a single school, the Federal University of São Paulo.
Replications with students from other countries and schools
would be required to be able to further generalize our results.

As commented in Section IV, history might also have
affected our experiment. In particular, subjects of the treatment

6In all cases the outliers were identified by box-plotting our results in R.

group could have gathered other knowledge that would also
impact on the FTSSR metric. However, the fact that outcomes
were not as significant for the control group – with students at
the same level but who were not taking the ST course – helps
increase confidence that the gathered ST knowledge explains
the improvement in reliable programming. In any case, further
experiments are required to confirm such evidence. In particu-
lar, our control group was much smaller than the treatment
group. However, it must be noted that they were taking a
course that involved programming, which was expected to
improve programming skills. As commented before, we plan
to replicate our experiment with larger groups of subjects, in-
cluding a control group with students taking courses unrelated
to software development, and with professionals.

C. Construct Validity

A characteristic of our experiment that might have affected
its construct validity is related to the metrics we have chosen
to evaluate our results. For instance, we have used functional
testing to develop the set of test cases to measure the reliability
of the produced code. However, since we have taught such
technique to the subjects, results might only indicate the extent
to which they have applied it, but not the impact of the ST
knowledge as a whole. However, as discussed in Section V,
some students did not appear to have explicitly used this
technique, which indicates that at least for some subjects,
other principles and techniques might have played a role in the
final outcomes. For instance, mutation testing theory stresses
common types of faults made by developers, modeled as
mutation operators. Such theory might also have stimulated
students to omit faults that were present in the first session
implementations in their second session code. Moreover, as
commented in Section IV, the non-significant increase in LoC
in implementations from the first to the second session was
also a secondary evidence that reliability has not decreased
afterwards.

VII. RELATED WORK

To the best of our knowledge, there are no studies that
directly measure the impact of software testing education on
programming skills, in particular with respect to the production
of more reliable software. However, there are investigations
into the testing proficiency of CS students, and the improve-
ment of ST education in CS curricula. Also, there are studies
that generally highlight the importance of ST education. Next,
we sample some of these studies in comparison to ours.

In regard to the testing proficiency of CS students, Carver
and Kraft [32] conducted an empirical study to determine
the testing ability of senior-level CS students. In particular,
they wanted to evaluate whether students were able to create
small, complete test suites for simple programs. Results show
that a coverage tool can significantly help students produce
better tests. While this investigation is related to ours, it is
significantly different in that Carver and Kraft’s experiment
evaluated the testing ability of students, while our study
investigates the impact of ST education on programming skills.



With respect to improving software testing education, par-
ticularly in CS programs, some authors report on a positive
“side-effect” in programming skills. Nevertheless, to the best
of our knowledge, these studies do not report on controlled ex-
periments to assess such “side-effect”. For instance, Jones [7]
has explored the integration of testing into introductory CS
courses through testing labs and diverse forms of courseware,
including tool support for automated program grading. The
author reports on the experience of an elective testing course
compound by 80% of practice and 20% of theory. Beyond
ordinary testing-related practices such as test case design,
students have performed reverse engineering tasks to derive
system specifications, have created test drivers and have writ-
ten test scripts. According to the author, one major benefit
obtained from this experience was the general improvement
of students’ software design and programming skills. Despite
this, Jones did not report on objective measurement of the
gains related to programming skills improvement and quality
of produced code, that is, conclusions are more qualitative
than quantitative. Our study, on the other hand, involved
a quantitative controlled experiment, which provided more
concrete evidence about such skill improvement.

Initiatives like Test Driven Learning (TDL) have also
yielded gains in students’ programming ability. For instance,
Janzen and Saiedian [33] introduced a combined, simultaneous
testing-programming learning approach that can help both
novice and experienced programmers improve their compre-
hension and ability, and hence produce high quality code
design with reduced defect density. To verify their assump-
tions, the authors reported on an experiment that involved
first-year CS students. The students have run four 50-minute
lectures whose topics were related to arrays and object ma-
nipulation. While one group of students was taught using a
TDL approach, another group was exposed to non-TDL (i.e.
traditional) teaching manner. A posterior evaluation revealed
that the first group performed 10% better than the second on a
quiz that covered the concepts and syntax from the experiment
topics. Although our experiment did not consider a simulta-
neous testing-programming learning process, our results are
well-aligned with Janzen and Saiedian’s.

More recently, Offutt et al. [34] also presented an ap-
proach to teach students to test better. The authors present
an in-depth teaching experience report on how to successfully
teach criteria-based test design using abstraction and publicly
accessible web applications. Clarke et al. [1], on the other
hand, proposed a collaborative learning environment to in-
tegrate testing education into Software Engineering courses.
Although these studies are important to improve the level
of testing education, none of them investigate its impact on
students’ programming skills.

In the literature, we can also find several studies that
highlighted the importance of testing education, and reported
the lack of adequate ST training in CS curricula. For instance,
Astigarraga et al. [8] showed that most CS academic programs
tend to emphasize development at the expense of testing
as a formal engineering discipline. Wong [9], on the other

hand, argued that software testers are generally not adequately
trained because most CS programs offer ST only as elective
courses. Clarke et al. [1] also argued that due to the large
number of topics to be covered in SE courses, little or no
attention is given to software testing, resulting in students
entering industry with little to no testing experience. Since
our experiment provides evidence that ST education can lead
to the production of more reliable software, it presents a new
argument to further motivate better testing education.

VIII. CONCLUSIONS

In a recent article, Vinton Cerf, one of the fathers of the
Internet, called attention to the growing need for responsible
programming in industry [35]. Such term is defined as a
clear sense of responsibility programmers should have for
their systems’ reliable operation and resistance to compromise
and error. We also believe programmers should be more
responsible for the code they produce, specially today when
so many depend heavily on software to work as advertised.

However, Cerf suggests that in order to achieve responsible
programming, we need better tools and programming envi-
ronments. While we agree with him, we believe that better
training of professionals could also improve the quality of the
produced software, in particular by the teaching of classical
software testing theory. Other authors have argued that more
exposure to software testing, practices, and tools is required
for better training of software developers [1, 9].

In this paper we presented scientific evidence for such a
claim. We conducted an experiment to verify the impact that
testing knowledge has on programming skills, in terms of
reliability. Our results suggest that after learning basic testing
principles and techniques, developers are more than twice
more likely to produce correct implementations. Moreover, our
data suggests that although the code produced afterwards is
more reliable, it does not tend to be significantly larger (in
terms of lines of code). This indicates that the exposure to
testing knowledge can make developers produce more reliable
implementations with approximately the same amount of code.

Future work includes the replication of our experiment with
professional developers and larger groups of students to shed
more light into this subject. Moreover, it would be interesting
to conduct experiments to further analyze how training in
each separate testing technique can impact on programming
skills (e.g., by performing several programming tasks along
the course).
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